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Quantum plasmas with or without a uniform magnetic field. III.
Exact low-density algebraic tails of correlations

F. Cornu
Laboratoire de Physique, Laboratoire associe´ au CNRS URA 1325, Ecole Normale Supe´rieure de Lyon,

46 allée d’Italie, F-69364 Lyon Cedex 07, France
~Received 20 January 1998!

For a multicomponent plasma of point charges with Coulomb interactions, the exact analytical low-density
expressions for leading algebraic tails of various quantum static correlations at large distances are derived at
the first two orders in density in the absence as well as in the presence of a uniform magnetic fieldB0 . The
calculation is nonperturbative in the Planck constant\ and in the coupling with the magnetic field. It settles the
existence of algebraic quantum screening for position correlations with or without charge summations. In the
case of a one-component plasma~OCP! our calculation does coincide with another expression which we derive
from an exact sum rule specific to the OCP. A simple physical picture emerges from our results. At low
density, each algebraic tail arises merely from one effective quantum interaction: a squared dipolar energy
whenB050 and a quadrupolar interaction in the anisotropic caseB0Þ0. Only Maxwell-Boltzmann statistics
and free quantum motion are involved at the first two orders in density. Thus for a given value of the magnetic
coupling constant the coefficient is exactly proportional to\4, and whenB050, it coincides with the low-
density limit of the semiclassical calculation for a Coulomb potential regularized at the origin. Quantum
dynamics and quantum statistics in the presence of Coulomb interactions show up only at the third order in
density where a singular dependence in\ appears. In the caseB050, the classical the Debye screening proves
to be sufficient to enforce a cascade in the exponents of the leading algebraic tails when charges are summed
over. WhenB0Þ0 a cancellation between the Debye screening effect and its semiclassical diffraction correc-
tion may be interpreted as a consequence of the intrinsic quantum nature of statistical magnetic properties.
Subsequently, the charge density induced by an external chargedq is nonlinear indq at the first order in
density whenB0Þ0. Finally, the crossover distance between classical exponential and quantum algebraic
falloffs is estimated: it is a few Debye lengths, because quantum effects are still quantitatively small in the
regime where exact analytical results are available.@S1063-651X~98!02810-4#

PACS number~s!: 05.30.2d, 05.70.Ce, 71.45.Gm
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I. INTRODUCTION

In the present paper we exhibit the exact analytical lo
density limits of leading algebraic tails for various corre
tions at large distancesr in a quantum plasma of poin
charges with Coulomb interaction at finite temperatu
1/b: we address the particle-particle, particle-charge,
charge-charge correlations,rag

(2)T(r ), (gegrag
(2)T(r ), and

(a,geaegrag
(2)T(r ), respectively.~In fact correlation means

two-body distribution function.! We also produce the tail o
the induced charge density(gegrg

ind(r ;q) in the presence o
an external point chargeq, which may be either finite or
infinitesimal. @In the latter case we use the notatio
(gegrg

ind,L(r ;dq), where the extra superscriptL ~not intro-
duced in previous papers! refers to the linear respons
theory.# Theseexact analyticalresults settle the existence o
algebraic screening in quantum plasmas whose Hamilto
is that given in Paper I. Indeed, the argument of Pape
about the algebraic decay of quantum correlations in C
lomb systems at any finite density is only perturbative in
sense that it is derived from expansions with respect to
auxiliary variable, namely, the loop density. The low-dens
regime corresponds to physical situations of low degener
and weak Coulomb coupling, and the present low-den
limits are derived by using the same techniques as th
introduced in Paper II. Moreover, we point out that an ex
PRE 581063-651X/98/58~5!/5322~25!/$15.00
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sum rule for the model of the one-component plasma~OCP!
implies the existence of an algebraic tail for the quant
static correlation in the presence ofB0 , as already noticed in
the analogous case of the classical time-displaced correla
for the same system@1#. Our result for the OCP seen as som
limit of a two-component plasma does coincide with the lo
density coefficient derived from the exact sum rule. The va
ous qualitative and quantitative results have been sum
rized elsewhere in the casesB050 @2# andB0Þ0 @3#.

The paper is organized as follows. The main results
displayed in Sec. II. In Sec. II A we give the expressions a
the formal structures of low-density tails ofrag

(2)T(r ) in order
to exhibit physical mechanisms at stake. At low density,
gebraic tails arise merely from squared dipolar interactio
when B050 or from quadrupolar forces in the anisotrop
caseB0Þ0. Their coefficients at orderr2 and r5/2 are ex-
actly proportional to\4 ~for a given value of the orbita
magnetic coupling!. A singular dependence shows up on
from orderr3 when quantum statistics and quantum dyna
ics with Coulomb interactions begin playing a role. Sim
larly, spin and position variables are coupled only by t
latter ones so that the spin does not appear at the first
orders in densities. In Sec. II B, we point out how the ex
low-density tail for the OCP may be derived from an exa
sum rule established in another framework. In Sec. II C
order of magnitude of the crossover distance at which
5322 © 1998 The American Physical Society
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algebraic quantum tail begins dominating the exponen
classical tail is shown to be a few Debye lengths: the eff
proves to be quantitatively small in the low-density regim
In Sec. III we recall relations between distribution functio
for quantum particles and for loops~Sec. III A!. The invari-
ance of the measure for loop shapes under inversion all
one to simplify the discussion of the small-k behavior of
correlations in Fourier space~see Sec. III B!. In Sec. IV we
sketch the scheme for low-density expansions. First, we
form loop-density expansions by using the scaling analy
of diagrams introduced in Paper II~Sec. IV A! and then we
replace loop densities by their expressions in terms of p
ticle densities~Sec. IV B!. Section V is devoted to the cas
B050. As at any finite density, there occurs a cascade
power laws when charges are summed over: a simple me
nism involving only classical Debye screening is shown
be efficient enough at the first two orders in density~Sec.
V A !. Explicit results at these orders are produced~Secs. V B
and V C! and diagrams that contribute at next order in de
sity are listed in order to discuss other quantum effects
appear only from third order~Sec. V D!. In particular, we
discuss the dependence of coefficients upon the Planck
stant \. The caseB0Þ0 is investigated in Sec. VI. Argu
ments of invariance under inversion enforce constraints
the diagrams to be considered~Sec. VI A!. A cancellation
between classical Debye screening and its semiclassica
fraction correction, which occurs only at the first order
density, is analyzed~Sec. VI B!. The explicit values of the
1/r 5 tails and their limits in weak or strong magnetic field a
given~Sec. VI C!. In Sec. VII the case of the OCP is handle
as a limiting case of a two-component plasma in the abse
~Sec. VII A! as well as in the presence~Sec. VII B! of B0 . In
the conclusion~Sec. VIII!, after discussion of some qualita
tive results~Sec. VIII A!, we consider other approaches
get a deeper insight into physical mechanisms at stake.
compatibility of algebraic screening with exact sum ru
which characterize perfect screening is discussed in the
density regime~Sec. VIII B!. WhenB050, low-density ex-
pansions of exact quantum tails coincide with low-dens
expansions of semiclassical expressions, because the
result is exactly proportional to\4 at the first two orders in
density~Sec. VIII C!. WhenB0Þ0 ~Sec. VIII D!, the intrin-
sic quantum nature of the algebraic tails which occur only
the presence of the magnetic field is discussed by comp
son with the simple model recalled in Paper I. The nonl
earity of the induced charge at the first order in density
explained. Finally~Sec. VIII E!, we recall that algebraic tails
with the same exponents as in the quantum case also ap
in classical time-displaced correlations. In the latter case
polarization cloud cannot follow instantaneously the mot
of the charge, because of inertia effects that are involved
soon as time-displaced averages are considered; then th
namical classical fluctuations of the instantaneous dipole
sociated with a charge and its screening cloud play a
similar to that of the static quantum fluctuations.

II. MAIN RESULTS

A. Formal structures of low-density tails

In the present section we resume the description
emerges from our final expressions for the low-dens
l
t
.
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particle-particle correlation at the first two ordersr2 and
r5/2. ~As in Paper II,r is a generic notation for particle
densities, while a term which is exactly of orderrn is de-
noted byf $n%.) A particle of speciesa is characterized by its
massma , its chargeea , and its spin\Sa . In fact, the spin
will not be involved in the expressions at orderr2 andr5/2.

WhenB050, at the first order in density,

rag
~2!T~r !uB050 ;

r→`

b4\4

240
rargeaegF ea

ma
2

ke/m
2

kD
2 GF eg

mg
2

ke/m
2

kD
2 G ,

~1!

whereb5(kBT)21 is the inverse temperature,kD is equal to
the inverse Debye screening length,kD5A4pb(araea

2,
andke/m

2 [4pb(a(raea
3/ma). The leading algebraic deca

Aag /r 6 of rag
(2)T(r )uB050 at ordersr2 and r5/2 turns out to

arise only from the squared fluctuations of some dipolar
teraction combined with classical Debye screening effe
More precisely,Aag

$n%/r 6, with n52 or 5/2, may be inter-
preted as the tail of the convolution

(
a1 ,a2

SD,aa1

cl
* @2bVa1a2

eff~6!u$n%#* SD,a2g
cl , ~2!

whereVa1a2

eff(6)(r )u$n% is a purely algebraic effective potentia

proportional to 1/r 6. SD,ag
cl (r ), which decays exponentially

fast, is the Debye part of the classical structure factor. T
structure factor is defined as

Sag~r !5rag
~2!T~r !1da,grad~r ! ~3!

and its classical~linearized! Debye approximationSD,ag
cl cor-

responds to

rD,ag
~2!Tcl~r !5rargF2beaeg

e2kDr

r G[rargFD,ag
cc . ~4!

In terms of dimensionless Brownian bridgesji which de-
scribe quantum position fluctuations~see Sec. III B of Paper
I!, Va1a2

eff(6)(r )u$n% is the average of some squared dipolar int

action over all possible shapesla i
ji with a normalized

Gaussian measureD(ji) and a typical extent equal to the d
Broglie thermal wavelengthla[Ab\2/ma. At zero density

2bVa1a2

eff~6!~r !u$0%5
1

2E D~j1!E D~j2!

3@W3~r ,j1 ,j2 ;a1 ,a2!#2, ~5!

whereW3 is a purely quantum dipole-dipole potential,

W3~r ,j1 ,j2 ;a1 ,a2![bE
0

1

ds1E
0

1

ds2@d~s12s2!21#

3@la1
j1~s1!•“#@la2

j2~s2!•“#

3S ea1
ea2

r
D , ~6!

andW3(r ,j1 ,j2 ;a1 ,a2) is the 1/r 3 tail of
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W[2bea1
ea2

E
0

1

ds1E
0

1

ds2@d~s12s2!21#

3vC„r1la2
j2~s2!2la1

j1~s1!…, ~7!

where vC(r )51/r . The mean value*D(j1)*D(j2)W3(r ,
j1 ,j2 ;a1 ,a2) vanishes by arguments of invariance und
ji→2ji . All 1/r n termsWn arising from the large-r Taylor
expansion ofW and which are not canceled by inversio
invariance of the measureD(j) are in fact short ranged
because, after the rotational invariance ofD(j) has been
taken into account, the latter terms are reduced to power
the Laplacian of 1/r and D(1/r )524pd(r ). The explicit
values ofVa1a2

eff(6)(r )u$n% with n50,1/2 are given in Sec. V C

We notice that in the case of a two-component plas
Aag /rarg is independent from speciesa or g in the low-
density limit and the force corresponding toAag

$2%1Aag
$5/2% is

attractive.
WhenB0Þ0, rotational invariance is broken in one spa

direction and nonsquared multipole-multipole interactio
partially survive after statistical average. At the first order
density,

rag
~2!T~r !uB0

;
r→`

2rargb3\4
eaeg

mamg
A~uCa ,uCg!

P4~cosu!

r 5 ,

~8!

where P4(x) is a Legendre polynomial andu is the angle
betweenB0 and r , as already noticed in Paper I, whi
P4(x)5@35cos4u120cos2u19#/64. In Eq.~8!

A~uCa ,uCg!5
3

2H 2
1

uCa
2 2uCg

2 F uCg
2

uCa
3

cothuCa2
uCa

2

uCg
3

cothuCgG
1

1

45
2

1

3uCa
2

2
1

3uCg
2

2
1

uCa
4

2
1

uCg
4

2
1

uCa
2 uCg

2 J , ~9!

whereuCa is the dimensionless coupling constant for orbi
magnetic interactionuCa[bmBaB0 . The interpretation is
the following. The leadingDag

$2%/r 5 tail of rag
(2)T(r )uB0

at the

first orderr2 reads

Dag
$2%

r 5
5rarg@2bVag

eff~5!~r !u$0%#, ~10!

whereVag
eff(5) is a purely quantum quadrupole-quadrupole

teraction

2bVa1a2

eff~5!~r !u$0%

5E DB0
~j1!E DB0

~j2!W5~r ,j1 ,j2 ;a1 ,a2!, ~11!

with
r

of

a

s

l

-

W5~r ,j1 ,j2 ;a1 ,a2!

52b
1

4E0

1

ds1E
0

1

ds2@d~s12s2!21#

3@la1
j1~s1!•“#2@la2

j2~s2!•“#2S ea1
ea2

r
D . ~12!

W5 is not short ranged in spite of the harmonicity of th
Coulomb potential, because the measureDB0

(j) is aniso-
tropic in the presence ofB0 . By using the covariance of a
Brownian motion driven by a uniform magnetic field~given
in Sec. III C of Paper II!, we get Eq.~8!. Dag

$2%/r 5 contains
only one direct quadrupolar contribution without any Deb
screening@contrary to what happens in Eq.~2! for Aag

$2%] and
there is no dipole-dipole or dipole-quadrupole quantum
teraction screened by monopole-dipole Debye interaction
ther. Indeed, there occurs a cancellation mechanism betw
classical exponential Debye screening and semiclassical
fraction corrections to it, so that the medium has no net c
tribution to Eq. ~10!. At next order, the same cancellatio
mechanism is involved but it does not suppress all screen
contributions.

The cancellation of Debye screening contributions may
related to the intrinsically quantum dynamical nature of s
tistical effects due to the magnetic field. It does not appea
the case of the 1/r 6 subleading tail in the presence ofB0 .
Indeed, according to Sec. VIII A of Paper I, a 1/r 6 decay
arises from the same diagrammatic structure whetherB0 is
switched on or not, andAag

$2%( r̂ ;B0)/r 6 ~with r̂[r /ur u) is
analogous to the tail of the convolution~2! with the mea-
sure DB0

(j) in place of D(j) in Eq. ~5!. The coefficient

Aag
$2%( r̂ ;B0) is anisotropic, because the effective potent

Va1a2

eff(6)u$0% is now calculated with the measureDB0
(j).

The coefficients of all considered tails at orders low
than r3 are entirely determined by quantum dynamics
independent particles~in the absence or in the presence
B0), Maxwell-Botzmann~MB! statistics, and classical De
bye screening. However, from orderr3 on, mechanisms are
more intricate and contributions from quantum dynamics a
quantum statistics for interacting charges appear in the st
tures of algebraic tails.

When charges are summed over, internal screening is
volved in the relation between exponents of correlation
cays at any finite density~as already discussed in Fourie
space in Paper I!. At the first two orders in density, whe
B050, classical Debye screening by itself is sufficie
to lead to the cascade of power lawsAag /r 6, Ba /r 8,
and C/r 10 for rag

(2)T(r )uB050 , (aegrag
(2)T(r )uB050 , and

(a,geaegrag
(2)T(r )uB050 , respectively. Indeed, at the first tw

orders in density,Ba /r 8 and C/r 10 may also be interpreted
as the tails of the convolution~2! with corresponding charge
summations with the results

(
g

egrag
~2!T~r !U

B050

;
r→`

1

r 8

1

32p
b3\4raea

ke/m
2

kD
2 Fke/m

2

kD
2

2
ea

ma
G , ~13!
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(
a,g

eaegrag
~2!T~r !U

B050

;
r→`

1

r 10

7

16p2 b2\4
ke/m

4

kD
4

. ~14!

When B0Þ0, all correlations~with or without summation
over charges! decay with the same 1/r 5 inverse power law.
At first ordersr2 andr5/2 this may be accounted for by th
fact that internal screening mechanisms, involving both
classical monopole-monopole Debye potential and its se
classical ‘‘diffraction’’ correction~more precisely a dipole
monopole Debye interaction! partially cancel one another a
first orders in density.

Screening of an external charge is also investigated
low density, whenB050, classical Debye screening of a
external charge enforces a cascade in the density orde
which the coefficientsAag , Ba , and C start. The leading
B!/r 8 tail of the induced charge density reads

(
g

egrg
ind,L~r ;dq!U

B050

;
r→`

1

r 8

1

32p
b3\4

ke/m
4

kD
4

dq. ~15!

It starts at orderr0; henceforth the 1/r 8 tail of the induced
charge density does not vanish in the strict zero-den
limit. The reason is that such a tail is valid for distanc
which are far larger than the Debye screening length so
the existence of the medium is always taken into acco
implicitly. WhenB0Þ0, the tailDag /r 5 of rag

(2)T(r )uB0
at the

lowest orderr2 ~but not at orderr5/2) results only from
nonlinear effects in each chargeea . Indeed, at orderr2, it
does not involve any net contribution from Debye screen
~which is linear inea) while the bare Coulomb interaction i
proportional toea and the quadrupolar moment associa
with the quantum motion of each chargeea in Eq. ~12! is
quadratic in smallea when B0 is switched on.@More pre-
cisely it varies asea

2/ma
3 ; this can be checked from the ex

plicit formula ~8!.# As a consequence, the tail of the induc
charge density(gegrg

ind(r ;q)uB0
, which can be derived from

rag
(2)T(r )uB0

~see Sec. VIII C of Paper I!, is nonlinear inq at

the corresponding orderr: it becomes cubic with respect t
the ratioq/mq for the external charge when the latter goes
zero—and henceforth vanishes for a fixed infinitesimal
ternal point charge which cannot be sensitive to the magn
field ~since its mass must be seen as infinite!. Indeed, accord-
ing to the loop formalism, the tail of the induced char
density (gegrg

ind,LuB0
(r ;dq) given by the linear respons

theory vanishes at orderr and shows up only at orderr3/2

~see Sec. VI B 4!.

B. The OCP as a test bench

An interesting test bench for our calculations is the mo
of the quantum OCP. The OCP is special in the sense
there exists an exact sum rule@4# that determines the value o
the term of orderuku2 in the Fourier transform of the struc
ture factorSOCP(r )5rd(r )1rOCP

(2)T(r ). ~This sum rule arises
from the fact that the center of mass decouples from rela
coordinates and is only submitted to the harmonic force
the background.! WhenB050, this term is analytic, which is
e
i-

t

at

ty
s
at
nt

g

d

-
tic

l
at

e
f

in agreement with the 1/r 10 leading algebraic decay of th
charge-charge correlatione2SOCP(r ). WhenB0Þ0, the ex-
act uku2 term in the small-k expansion ofSOCP(k) oscillates
in its dependence upon the angleuk betweenB0 and k. A
part of this oscillating term is nonanalytic in the compone
of k and it gives the coefficient of theDOCP/r 5 tail of
SOCP(r ) at any density implicitly.

More precisely, according to Eq.~5.63! of Ref. @4#, the
uku2 term is given by

4pb lim
uku→0U

ukfixed

e2SOCP~k!uB0

uku2

5
1

v1
2 2v2

2 F ~v1
2 2vc

2!
b\v1

2
cothS b\v1

2 D
2~v2

2 2vc
2!

b\v2

2
cothS b\v2

2 D G . ~16!

The term in the right-hand side of Eq.~16! corresponds to
the double limit limL→`limR→` of *Cdr 8*drvC(r
2r 8)e2SOCP(r 8) where r 8 is integrated over a cylinderC
with radiusR and length 2L and whose axis is parallel with
B0 . The uku2 term in e2SOCPuB0

(k) is not analytic in the

components ofk, because frequenciesv1 andv2 oscillate
with the angleuk ,

v6
2 5

1

2
$vp

21vc
26@~vp

21vc
2!224~vpvccosuk!2#1/2%,

~17!

where vc[(e/mc)B0 is the cyclotronic frequency andvp

5A4pe2r/m is the plasmon frequency. WhenB0Þ0 such
an oscillatory behavior in the angleuk betweenB0 andk also
appears in density waves with large wavelength in the r
dom phase approximation@5#. We notice that ifB050, then
v1

2 5vp
2 and v2

2 50, and Eq.~16! reduces to the sum rule
derived in@6,7#,

4pb lim
uku→0

e2SOCP~ uku!uB050

uku2
5

b\vp

2
cothS b\vp

2 D .

~18!

The dependence on cosuk of the exact term~16! is intri-
cate. However, explicit analytical results may be obtained
the low-density regime atuC5b\vc/2 fixed. At orderr, the
uku2 term inSOCP(k) involves a term proportional tok2 plus
a contribution withk2(cosuk)

25@k#z
2 , which is anisotropic

but analytic. At orderr2 there appears an extrak2(cosuk)
4

5@k#z
4/k2 term, which is nonanalytic. We have checked th

the low-density coefficientDOCP
$2% at orderr2 which is derived

from our low-density results for a two-component plasm
does coincide with the inverse Fourier transform of t
nonanalytic part in the low-density limit of the exactuku2

term in SOCP(k).
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C. Orders of magnitudes

The crossover distancer * between the Debye exponenti
decay and the algebraic tail may be calculated in some ph
cal situations, where conditions for low-density expansio
are met. In regimes of weak Coulomb coupling and low d
generacy, the numerical value of the algebraic tail of
particle-particle correlation becomes more important th
that of the Debye exponential decay only at distances
about ten Debye lengths, in the absence@2# as well as in the
presence@3# of B0 .

The latter estimations are obtained by considering tails
particle-particle correlations for a symmetric two-compon
plasma in order to get very simple analytical expression
terms of dimensionless parameters of the problem. Fo
symmetric two-component plasma in whiche152e2[e,
the local neutrality relation implies thatr15r2[r. The
Debye expression, which is exact for a classical plasma
the limit of weak Coulomb coupling@8#, reads

rag,D
~2!Tcl~r ! ;

r→`

2sgn~ea!sgn~eg!r2A3G3/2
e2x

x
, ~19!

where sgn(ea) is the sign of the chargeea , x[r /jD , andjD

is the Debye length,jD[kD
21 . The mean interparticle dis

tancea is calculated from the relation (4p/3)a3(2r)51, so
that the coupling constant isG[be2/a5(1/3)(a/jD)2.
When B050, the first-order term~1! in the 1/r 6 tail of
rag

(2)T(r )uB050 is reduced to

rag
~2!T~r !uB050 ;

r→`

r2
9

320
G5S l2

a D 4F11
m2

m1
G2 1

x6 , ~20!

wherel2 is the de Broglie thermal wavelength of negati
charges,l2[Ab\2/m2. For instance, the core of the Su
may be seen as a hydrogen plasma almost fully ionized
pressure and temperature, with a mass densityrm
;160 g/cm3 at temperatureT;1.53107 K. Thus a;0.1
Å, the system is rather weakly degenerated,l2 /a;0.7, and
weakly coupled,G;0.1. The contribution from the algebra
tail Aag /r 6 becomes as large as the classical Debye-Hu¨ckel
approximation at a crossover distancer * ;31jD . In the
presence ofB0 , we use the simple form~8! valid in the limit
whereB05uB0u becomes infinite,

rag
~2!T~r !uB0

;
r→`

2sgn~ea!sgn~eg!r2

3
3A3

10
G7/2S la

a D 2S lg

a D 2P4~cosu!

x5 . ~21!

In the opposite regime of very weakB0 , the limiting law is
just equal to Eq. ~21! multiplied by (1/105) times
(bmBaB0)2(bmBgB0)2, wheremBa is the Bohr magneton
mBa5ea\/2mac.

An example where we can compare results with or wi
out magnetic field is that of an intrinsic semiconductor wh
the charge-carrier gas~made of electrons and holes! is indeed
at finite temperature and weakly degenerated as wel
weakly coupled. For instance, in germanium, holes have
same mass as electrons,a;1530 Å andT;300 K, so that
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l2 /a;0.01, G;0.4, andr * ;43jD . In laboratory experi-
ments, magnetic fields are not much stronger than a
teslas. ForB0;1 T, bmBB0;2.231023 T and we are in
conditions of weak coupling with the external magnetic fie
Then we find thatr * ;66jD . We notice that if it were pos-
sible to generate magnetic fields so intense that the co
cient of the 1/r 5 tail would no longer depend onB0 at lead-
ing order, thenr * ;36jD .

It is not surprising thatr * is about tenjD . Indeed, our
analytical expressions do correspond to fully quantum
namics but quantum effects are not quantitatively import
at low density. However, there may exist some system w
stronger quantum features wherer * might be of the same
order asjD .

III. BASIC FORMULAS AT ANY DENSITY

A. Particle versus loop correlations

The part of the correlation that arises from configuratio
where particles at positions0 andr are not exchanged unde
a cyclic permutation of quantum statistics may be expres
as @9#

raaab

~2!T unonexch~r !

5 (
pa ,pb

papbE D~Xa!E D~Xb!r~xa!r~xb!h~r ,xa ,xb!,

~22!

with notations of Paper I. In the part of the paper devoted
the derivation of the coefficients of algebraic tails, we use
notationaa and ab in order to keep track of loops that ar
root points in the diagrammatic representation of the Urs
function h. We recall that a ‘‘point’’ in a diagram denote
the loop variables (R,x). The analogous nonexchange pa
of the induced charge density reads@10#

(
g

egrg
indU

nonexch

dq~k!
52

4pb

k2 E dxar~xa!eaa
paGh~k,xa!,

~23!

whereGf is defined as

Gf~k,x![E dxbr~xb!eab
E

0

pb
dte2 ik•Xb~t! f ~k,x;xb!.

~24!

The structures of leading algebraic tails of various cor
lations have been given in terms of diagrams with weig
r(L) before any expansion in Paper I. They involve d
gramsP̃ with bondsFcc, Fcm, FR2W, andW. For all kinds
of correlations, they are expressed in terms of one and
same functionhnn, with proper ‘‘dressings’’ which describe
screening of monopole-monopole and monopole-multip
quantum interactions.hnn is the sum of all diagrams inh in
which root points are not Coulomb root points, i.e., in whi
each root pointLr is neither the end point of a single bon
Fcc(Lr ,Li) or Fcm(Lr ,Li). For instance, the 1/r 6 tail of
raaab

(2)T comes from
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SD* hnn* SD , ~25!

where SD describes a loop surrounded by a polarizat
cloud in the mean-field ‘‘Debye’’ approximation~see Sec.
VIII A of Paper I!. We recall that * denotes a convolution i
position space and an integration over the internal degree
freedom of the intermediate loop.

B. Structure of Fourier transforms of correlation tails

Since diagrams of interest are convolutions, we work
Fourier space. Indeed, the large-distance behavior of a
volution f * g is merely given by the nonanalytical singular
ties in the product of small-k expansions of Fourier trans
forms of f andg ~see Sec. VI B of Paper I!.

According to the general study performed in Paper I,
orders inuku of dressings and ofhnn are determined by two
kinds of symmetry arguments: on one hand, parity argume
which occur when loop shapes are integrated over and
the other hand, arguments of rotational invariance aro
any axis~or only around some given direction! which make
~or do not make! some terms analytical in the components
k. In the very simple example which we mentioned in E
~25! whenB050, the terms of orderuku0, uku, anduku2 in the
singular partShnn(k,x1 ,x2) of the Fourier transform ofhnn

are canceled by symmetry arguments at any finite den
and singularities ofhnn(k) appear only from orderuku3. We
notice that, if the first term in the Fourier transform of th
dressing is of orderukup with p.0, then the order of the
singular term to be looked for inShnn is lowered for a given
inverse power law in the decay of the considered correlat

Moreover, the part ofShnn(k,X1 ,X2) which is relevant
has a given parity inX i , because each term of a given ord
in uku in the small-k expansion of the dressing has a giv
parity in the shapes of its arguments. As in Paper I, we
the notationf [q,q8] (x,x8) whereq50 (q850) if f is even
under inversion ofX (X8) andq51 (q851), if it is odd.
According to Sec. VIII A of Paper I

SD~k,x1 ;xa!5dx1 ,xa
2eaa

pa

4pbr~x1!ea1
p1

k2 F12
k2

k2G
1Oanal~ uku4!, ~26!

whereOanal(uku4) denotes a term of orderuku4 which is ana-
lytical in the components ofk, and at any order inuku

SD5SD
[0,0] . ~27!

With the convention that the root point is always a Coulom
point in dressings bySD and Fcm, so thatFcm(k,x1 ;xa)
[Fcm(k,xa ,x1),

r~x1!Fcm~k,x1 ;xa!

5eaa
pa

4pbea1
p1r~x1!

k2 F E
0

p1dt

p1
ik•X1~t!

1E
0

p1dt

p1

1

2
„k•X1~t!…2G1O~ uku3!. ~28!
of
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Thus the termFcm(p)(k,x,x8) of order ukup in Fcm(k,x,x8)
is such that

Fcm~p!5Fcm~p![0,u~p!] , ~29!

whereu(p)50 if p is even andu(p)51 if p is odd. In fact,
Fcm is independent ofXa . Moreover, according to Sec. V A
of Paper II,

E drFcm~r ,x1 ;xa!50. ~30!

Other properties arising from parity arguments are use
to simplify formulas. First,

E dr @FR2W#~r ,x,x8!5E dr @FR2W3#~r ,x,x8!,

~31!

whereW3 is the 1/r 3 part in the purely algebraic term

W~r ,x,x8!52beaea8E
0

p

dtE
0

p8
dt8$d„@t2P~t!#

2@t82P~t8!#…21%
1

ur1X8~t8!2X~t!u
.

~32!

Only W3 contributes to*drW(r ) in Eq. ~31!, because every
derivative of greater order than 2 that is not canceled
parity arguments involves an even power of the Laplacian
1/r , the integral of which vanishes.~This property has al-
ready been used in Sec. IV B of Paper II.! SinceD(1/r )5
24pd(r ),

E drW3~r ,x,x8!

52
4p

3
beaea8E

0

p

dtE
0

p8
dt8$d„@t2P~t!#

2@t82P~t8!#…21%X~t!•X8~t8!. ~33!

Moreover,

W3
[0,0]50 ~34!

and subsequently, according to Eq.~31!,

E dr @FR2W# [0,0]~r ,x,x8!5E drFR
[0,0]~r ,x,x8!.

~35!

In the present simple example~25!, only the part
Shnn

(3)[0,0](k,x1 ,x2) of Shnn
(3) (k,x1 ,x2) is to be considered be

causeSD(k50,x;x8) is even under inversion of both it
arguments. As a conclusion, the part fromh that does con-
tribute to the 1/r 6 tail of raaab

(2)T (r )uB050 arises only from

SD* hnn* SD and has a very simple structure in Fouri
space,
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Sh
~3!uB050~k,xa ,xb!5E dx1E dx2

3SD
~0!~k,x1 ;xa!Shnn

~3![0,0]
~k,x1 ,x2!

3SD
~0!~k,x2 ;xb!. ~36!

IV. SCHEME FOR LOW-DENSITY EXPANSIONS

Once structures of correlation tails have been analyze
Fourier space, the low-density expansions may be achie
in two steps: a first expansion in terms of the loop dens
and a second one in terms of the particle density. As in Pa
II, the order in density~of loops or of particles! is denoted by
braces in order to avoid confusion with the order ink which
is referred to in parentheses. We use the notationr loop

n @rn#
for the order in loop@particle# density.

A. Loop-density expansions

1. Dressings at low loop density

Dressings are entirely scaled byk5A4pb*dxp2e2r(x)
according to the definitions ofFcc and Fcm given in Sec.
IV A of Paper I. Simple results are the following
r(x8)Fcc(k50,x,x8) is of orderr loop

0 exactly, and, accord
ing to Eq.~26!,

SD~k50,x,x8!5O~r loop
0 !. ~37!

Moreover, the term of orderuku2q is proportional tor loop
2q , so

that the order inr decreases when the order inuku increases.
On the contrary,Fcm has a more complex structure. Neve
theless, we only need a property derived from Eq.~28!,
namely,

r~x8!Fcm~1!~k,x;x8!5O~r loop
0 !. ~38!

2. Loop-density expansions for tails of hnn

According to Ref.@10# and Sec. VII A of Paper I, a tai
Shnn

(g) (r ,x,x8) is expressed as a 1/r g term independent of any
loop density times integrals of functionsG that involve

graphsP̃ with weightsr(L) and bondsFcc, Fcm, FR2W,
and W. TheseG’s are expanded in powers of loop dens
and then in powers of particle density by decomposing d

grams P̃ in terms of diagramsP̃T with bonds Fcc, Fcm,
@Fcc#2/2, FRT2W, and W, with FRT[FR2@Fcc#2/2. In-
deed, ther loop thenr expansions rely on a scale analysis
r loop introduced in Sec. IV A of Paper II for the derivation o
the low-density free energy, with the only difference that t
bond FRT is split into FRT2W and W, because the latte
decomposition is the proper one for selecting algebraic ta

The orders inr loop for Fcc and Fcm have already been
given.FR(k) andW(k) are known from Sec. IV B of Pape
II, and

r~x8!@FRT2W#~k50,x,x8!5O~r loop!. ~39!

We notice that properties~31! and~35! also hold whenFR is
replaced byFRT . As shown below, the expansions of alg
braic tails ofShnn start at order zero inr loop.
in
ed
,
er

-

e

s.

B. Particle-density expansions

Expansions in terms of quantum particle densities are p
formed by using ther expansions ofr(L), k, and of bonds.
We recall that integration over loop shapes cannot dimin
the order in density, but, on the contrary, it can only increa
it.

The fundamental properties for ther-expansion of the
loop density have been derived in Sec. III D of Paper
ra,p(Xp) starts at orderrp,

D~j!ra,1~j!5raDB0
~j!1O~r2! ~40!

andk5kD1O(r3/2). Equation~40! is valid in the presence
as well in the absence of a magnetic field~because it comes
from a diagrammatic structure!.

As shown below, only loops withp51 will have to be
taken into account in the study of the coefficients of lead
tails at the first two orders in density. For instance, the co
ficient Aaaab

of the 1/r 6 tail of the particle-particle correla

tion raaab

(2)T uB050(r ) will be easily calculated up to orderr5/2,

because, according to Eqs.~22!, ~36!, and ~37!, it involves
only Shnn

(6)[0,0]$0%(r ,j1 ,j2) andShnn
(6)[0,0]$1/2%(r ,j1 ,j2) which are

of orderr0 andr1/2, respectively.
The tail of the particle-particle correlation will not be ca

culated up to orderr3, because sources of mistakes are t
numerous. Indeed,r(L) should be expanded up to orderr2,
dressings in Fourier space should be taken into account
ther than up to the first simple orders inr and k, and dia-
grams with more numerous internal points would be
volved. For the same reasons, we will not give t
subleading tails of correlations.

However, in view of the qualitative discussion of highe
order terms inr, we give more precise formulas forra,1(j)
and ra,2(X2) at ordersr2 and r5/2. These expressions ar
derived from results in Sec. III D of Paper II. In the diffe
enceJ$1%(j)2*DB0

(j8)J$1%(j8), only the part ofJ$1%(j) that

explicitly depends onj does contribute and, according to
formula in Sec. III E and calculations in Sec. IV B of Pap
II,

D~j!ra,1
$2%~j!5(

g
rg lim

R→`
E

r ,R
drE DB0

~j8!Fe2beaegv~r ,j,j8!

2E DB0
~j9!e2beaegv~r ,j9,j8!G2raEa* . ~41!

In Eq. ~41! we have used notations of Sec. III E of Paper
whereEa* [*D(X2)Eexch,a* (X2). The term of orderr3/2 has
the structure

Ja
$3/2%~j!2E DB0

~j8!Ja
$3/2%~j8!2bea

2rakDEa* . ~42!

The loop density withp52 is

ra,2
$2%~X2!5ra

2 1

2
Eexch,a* ~X2!. ~43!

The correction of orderr5/2 is equal to the term of orderr2

given in Eq. ~43! times bea
2kD . Equations~41!–~43! will
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not be written more precisely, because the only import
point is that, after integration overj or X2 , these terms will
give rise to diagonal or exchange matrix elements of tw
body quantum Gibbs factors.

V. CASE B050

The diagrammatic structures of leading tails of vario
correlations have been given in Secs. VIII B and VIII C
Paper I. In the present section we immediately select the
of the Fourier transform of the dressing that gives the c
tribution to the first orders inr loop. This selection is done
from the start in order to avoid writing the more compl
formulas that hold beforer loop expansions.

A. Structure in Fourier space and dressing at low loop density

The structure of the Fourier transform of the 1/r 6 tail of
the particle-particle correlation has been derived as an
ample in Sec. II A. We recall briefly the main lines of th
arguments leading to Eq.~36!. According to Paper I, the
Aaaab

/r 6 tail of raaab

(2)T comes from the 1/r 6 tail of

SD* hnn* SD , and more precisely only from the values of th
SD’s for k50 and from the 1/r 6 tail Shnn

(6) (r ,Xa ,Xb) of hnn

before integration over the shapesXa and Xb . Moreover,
parity arguments show that only the partShnn

(6)[0,0](r ,x1 ,x2)
of the 1/r 6 tail of hnn that is even under inversion of eac
argument is to be considered.

SinceSD(k50,x1 ;xa) is exactly of orderr loop
0 and since

Shnn
(6)[0,0](r ,x1 ,x2) starts at orderr loop

0 ~according to Appen-
dix A!, theAaaab

/r 6 tail of the particle-particle correlation a

the first two ordersr loop
2 andr loop

5/2 is given by inserting Eq.
~36!, whereShnn

(3)[0,0](k,x1 ,x2) is reduced to its parts of or
dersr loop

0 andr loop
1/2 , into Eq. ~22!. The result is

Aaaab

r 6
5E dx1p1r~x1!F dea1

,eaa
24pbea1

3

eaa(pa

pa
2E D~Xa!r~xa!

k2
G E dx2p2r~x2!

3F dea2
,eab

24pbea2

eab(pb

pb
2E D~Xb!r~xb!

k2
G

3$Shnn
~6![0,0]u loop

$0% ~r ,x1 ,x2!1Shnn
~6![0,0]u loop

$1/2%~r ,x1 ,x2!%

1O~r loop
3 !. ~44!

The Baa
/r 8 tail of the particle-charge correlatio

(ab
eab

raaab

(2)T uB050(r ) comes fromSD* hnn* SD** with SD**

5SD1rFmc1rFcc* rFmc, according to Sec. VIII B of Pa-
per I. The analysis of the structure in Fourier space is
following. After summation over charges, the Fourier tran
form of SD** gives a contribution that begins at orderuku.
Indeed,
t

-

s

rt
-

x-

e
-

E dxbr~xb!eab
pbSD** ~k,x2 ;xb!

5r~x2!p2ea2F k2

k2
1A~2!~k!

2E
0

p2dt

p2
~eik•X2~t!21!1O~ uku3!G ~45!

anda priori both 1/r 5 and 1/r 6 tails of hnn should contribute
to the 1/r 8 tail of interest. However, only the term
k2@r(x2)/k2# does contribute at the first ordersr loop

2 and
r loop

5/2 in Ba /r 8. In other words, terms of interest come on
from SD* hnn* SD , as in the case of the particle-particle co
relation, though the general diagrammatic structures
raaab

(2)T uB050(r ) and (ab
eab

raaab

(2)T uB050(r ) are different at fi-

nite density. Therefore these terms involve on
Shnn

(6)[0,0](r ,x1 ,x2) @and notShnn
(5)[0,0](r ,x1 ,x2)]. They read

2
1

k2E dx1p1r~x1!F dea1
,eaa

24pbea1

3

eaa(pa

pa
2E D~Xa!r~xa!

k2
G

3E dx2p2ea2
r~x2!$DShnn

~6![0,0]u loop
$0% ~r ,x1 ,x2!

1DShnn
~6![0,0]u loop

$1/2%~r ,x1 ,x2!%1O~r loop
2 !. ~46!

The C/r 10 tail of the charge-charge correlation

(
aa ,ab

eaa
eab

raaab

~2!T uB050~r !

comes fromSD** * hnn* SD** . An analysis similar to that per
formed for the particle-charge correlation shows that, at
first two orders inr loop, the C/r 10 tail arises only from
SD* hnn* SD . It is equal to

1

~k2!2E dx1p1ea1
r~x1!E dx2p2ea2

r~x2!

3$DDShnn
~6![0,0]u loop

$0% ~r ,x1 ,x2!1DDShnn
~6![0,0]u loop

$1/2%

3~r ,x1 ,x2!%1O~r loop!. ~47!

The nonexchange part of the induced charge den
(gegrg

ind(r ;dq) in the presence of an infinitesimal extern
chargedq located at the origin is given by the linear re
sponse expression~23!. It decays as 1/r 8 @10#, as the particle-
charge correlation. According to Sec. VIII C of Paper I, t
B/r 8 tail of the induced charge density originates fro
SD* * hnn* SD** , with

SD* ~k,x1 ;xa![SD~k,x1 ;xa!1r~x1!Fcm~r ,xa ,x1!.
~48!
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According to Eqs.~26! and ~28!

E dxar~xa!eaa
paSD* ~k,x1 ;xa!

5r~x1!eaa
p1F k2

k2
2E

0

p1dt

p1
~e2 ik•X1~t!21!1O~ uku3!G .

~49!

This expression is similar to Eq.~45! without the term
A(2)(k) and with the change ofX2 into 2X1 . Another
screening equation reads

GS
D** ~k,x2!5

r~x2!p2ea2

k2
k21O~ uku3!, ~50!

where Gf is defined in Eq.~24!. Equations~49! and ~50!
imply that the 1/r 8 tail of the induced charge density at th
lowest order inr loop is entirely determined bySD* hnn* SD .
It is reduced to

4pb

~k2!2E dx1p1ea1
r~x1!E dx2p2ea2

r~x2!

3$DShnn
~6![0,0]u loop

$0% ~r ,x1 ,x2!1DShnn
~6![0,0]u loop

$1/2%~r ,x1 ,x2!%

1O~r loop!. ~51!

B. Loop-density expansions of the 1/r 6 tail of hnn

According to Appendixes A and B, the 1/r 6 tails of hnn at
ordersr loop

0 and r loop
1/2 arise from purely 1/r 6 structures with

two intermediate points.Aaaab
/r 6 at orderr loop

2 is derived
from Eq. ~44! with

Shnn
~6![0,0]u loop

$0% 5
1

2
@W3#2, ~52!

whereW3 is the 1/r 3 tail of W defined in Eq.~32! and the

corresponding part ofh comes from the diagramP̃ equal to
SD* @FR2W#* SD . At order r loop

5/2 , Aaaab
/r 6 originates

from Eq. ~44! with

Shnn
~6![0,0]u loop

$1/2%~r ,x1 ,x2!

5E dx18S E dxF1

2
@Fcc#2r* SDG~x,x1 ,x18! D

3
1

2
@W3~r ,x18 ,x2!#2

1E dx28
1

2
@W3~r ,x1 ,x28!#2

3S E dyFSD* r
1

2
@Fcc#2G~y,x28 ,x2! D . ~53!

The corresponding part ofh arises from the sum of the dia

gramP̃,
SD*
1

2
@Fcc#2r* SD* @FR2W#* SD , ~54!

and from the symmetric diagram

SD* @FR2W#* SD* r
1

2
@Fcc#2* SD . ~55!

The leading large-distance behaviors of these diagrams
obtained by replacingFR2W by (1/2)@W3#2 and other func-
tions by their Fourier transforms atk50.

Aaaab
/r 6 at orderr loop

3 comes from anShnn
(6) with an alge-

braic structure involving either two or three intermedia
points. In a simplified notation of the objects introduced
Appendix A, terms with a purely 1/r 6 tail involving two
intermediate points at orderr loop

3 read

r loop
$2% ~1!G 2

$0%~1,18!
1

2
@W3~18,28!#2G 2

$0%~28,2!r loop
$1% ~2!

1sym. term ~56!

or

r loop
$1% ~1!G 2

$1/2%~1,18!
1

2
@W3~18,28!#2G 2

$1/2%~28,2!r loop
$1% ~2!

~57!

or

r loop
$1% ~1!G 2

$1%~1,18!
1

2
@W3~18,28!#2G 2

$0%~28,2!r loop
$1% ~2!,

~58!

wherer loop
$1% denotes a contribution of the loop densityr(x)

with p51 while r loop
$2% corresponds either to the exchan

term in the expansion ofr(j) given in Eq.~41! or it refers to
the leading term inra,2(X2) which is equal to Eq.~43!.
Terms with a purely 1/r 6 tail involving three intermediate
points at orderr loop

3 are of the form

r loop
$1% ~1!G 3

$1%~1,18,19!W3~18,28!W3~19,28!

3G 2
$0%~28,2!r loop

$1% ~2!, ~59!

whereG 2
$0% , G 2

$1/2% , G 2
$1% , andG 3

$1% are given in Appendix B.
~We notice that in the present case the index$n% refers to the
order in density of the functionafter its integration over
position variables.!

C. Results at the first two orders in particle density

An important conclusion of Sec. V B is that, at the fir
two orders in r loop, the coefficients of all tailsAag /r 6,
Ba /r 8, C/r 10, and B!/r 10 prove to arise only from
SD* hnn* SD . .From now on, we replaceaa by a andab
by g.

Now we turn to r expansions by using the propertie
ra,p(Xp)5O(rp) and ra,1(j)5ra1O(r2) for B050 @see
Eq. ~40!#. At the first two orders in density the coefficients
all tails of interest are determined by diagrams where~root or
internal! loops with only p51 are to be considered. Thu
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*dx is replaced by(a*D(j), andra(j) by ra . Then the
dressing is reduced to a classical Debye contribution

(
pa

paE D~Xa!r~xa!SD~k50,x1 ;xa!U$0%

5raF da1 ,a2ea

4pbea1
ra1

kD
2 G5E dxSD,aa1

cl ~x!, ~60!

whereSD,aa1

cl is given by Eq.~4!. Besides, the 1/r 3 tail W3 of

W in Eq. ~32! takes the value~6! for p15p251.

1. Particle correlation

According to the preceding section, the first two terms
the r loop expansion ofAag /r 6 are of ordersr loop

2 and r loop
5/2

and are given by Eqs.~44!, ~52!, and ~53!. When dressings
by SD are replaced by Eq.~60!, the 1/r 6 tail of the particle-
particle correlation rag

(2)T(r )uB050 at orders rn with n

52,5/2 reads

Aag
$n%

r 6
5 (

a1 ,a2

E dxSD,aa1

cl ~x!E dySD,a2g
cl ~y!

3@2bVa1a2

eff~6!~r !u$n%#, ~61!

whereVa1a2

eff(6)(r )u$0% is defined in Eq.~5! and

Va1a2

eff~6!~r !u$1/2%5(
a8

Va1a8
eff~6!

~r !U $0%

3(
g8

E dxSD,a8g8
cl

~x!E dy
1

2
@FD,g8a2

cc
~y!#2

1sym. term. ~62!

In Eq. ~62! ‘‘ sym. term’’ denotes a symmetric term obtaine
by exchanging the roles ofa1 and a2 . Equation ~61! is
indeed equal to the tail of the convolution~2!.

In terms of the covariance introduced in Sec. III C of P
per II, the squared mean dipolar potential reads

2bVa1a2

eff~6!~r !u$0%5
~bea1

ea2
la1

la2
!2

2

3E
0

1

ds1E
0

1

ds2E
0

1

ds18E
0

1

ds28

3@d~s12s2!21#@d~s182s28!21#

3covxx~s1 ,s18! covxx~s2 ,s28!

3(
m,n

F]mnS 1

r D G2

. ~63!

According to the explicit value of the covariance for ind
pendent particles recalled in Sec. III C of Paper II, the fo
integrations over thes variables give a factor 1/720. Sinc
(m,n@]mn(1/r )#256/r 6, we get
-

r

2bVa1a2

eff~6!~r !u$0%5
1

240
b4\4

ea1

2

ma1

ea2

2

ma2

1

r 6 . ~64!

The expression of2bVa1a2

eff(6)(r )u$1/2% is derived from Eqs.

~62!, ~64!, and

(
g8

E dxSD,a8g8
cl

~x!E dy
1

2
@FD,g8a2

cc
~y!#2

5ea2

2 p
b2

kD
ra8ea8

F ea82

4pb(
g8

rg8eg8
3

kD
2

G . ~65!

By using Eq.~60! the coefficientsAag
$n% (n52,5/2) of the

1/r 6 tail given by Eqs.~61!, ~62!, ~64!, and ~65! may be
written in the following concise form:

Aag
$n%5

b4\4

240
rarg (

a1 ,a2
F da,a1

2ea

4pbea1
ra1

kD
2 G

3F dg,a2
2eg

4pbea2
ra2

kD
2 GA a1a2

$n% , ~66!

with

A a1a2

$0% 5
ea1

2

ma1

ea2

2

ma2

, ~67!

A a1a2

$1/2% 5ea1

2 ea2

2 S 1

ma1

1
1

ma2
Dpb2

kD

3F(
a8

ra8

ea8
4

ma8

2
ke/m

2

kD
2 (

g
rgeg

3G , ~68!

where ke/m
2 54pb(araea

3/ma . For instance, summation
over a1 anda2 are performed with the result~1!.

For a two-component plasma of chargese1 ande2 , with
massesm1 andm2 , the previous general formulas at orde
r2 andr5/2 may be specified by using the neutrality relatio
e2r252e1r1 . We find

rag
T~2!~r !uB050 ;

r→`

rarg

r 6

b4\4

240 S e1e2

e11ue2u D
2

3F e1

m1
1

ue2u
m2

G2F11
1

2
bkDe1ue2uG .

~69!

The ratioAag
$5/2%/Aag

$2% is of order (a/jD)3, namely, of order
G3/2 whereG is the coupling constant defined after Eq.~19!.
The correction is indeed negligible in the weak-coupli
limit. We notice that, in the case of a two-component plasm

the neutrality relation implies that the coefficientsAag
$n% of the

1/r 6 tail of particle-particle correlations at ordersrn, with
n52,5/2, are positive. The corresponding effective inter
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tion is attractive, whatever the signs of the charges. Mo
over these coefficients satisfy the relation

A11
$n%

r1
2

5
A22

$n%

r2
2

5
A12

$n%

r1r2
, n52,

5

2
. ~70!

We stress that, from a technical point of view, this equa
arises only from the neutrality relation and from the struct
~66! whereA a1a2

$n% has no special property. From a mo

physical point of view, the peculiar identity~70! is due to a
classical contribution in the screening of every quant
charge by the surrounding plasma, as discussed in
VIII D.

2. Other correlations

TheBa /r 8, C/r 10, andB!/r 8 tails of (gegrag
(2)T(r )uB050 ,

(ageaegrag
(2)T(r )uB050 , and (gegrg

ind,L(r ;dq)uB050 are
given by Eqs.~46!, ~47!, and ~51! at the first two orders in
r loop. According to Eqs.~52! ~53!, ~60!, and ~65!, together
with D(1/r 6)530/r 8 and D(1/r 8)556/r 10 we get for n
52,5/2

Ba
$n21%52

b4\4

8

ra

kD
2 (

a1 ,a2
F da,a1

2ea

4pbea1
ra1

kD
2 G

3ea2
ra2
A a1a2

$n% , ~71!

C$n22%57b4\4
1

kD
4 (

a1 ,a2

ea1
ra1

ea2
ra2
A a1a2

$n% , ~72!

B!$n22%5
p

2
b5\4

1

kD
4 (

a1 ,a2

ea1
ra1

ea2
ra2
A a1a2

$n% .

~73!

As already mentioned, at the first two orders in density, th
tails arise only fromSD* hnn* SD with adequate summation
over charges. On the other hand, according to Eq.~60!, the
small-k behavior of Sag,D

cl (k) is similar to the term
r(xa)SD

(2)(k,x1 ;xa) of order uku2 given in Eq. ~26! and
which is of order 1/r,

(
g

egSag,D
cl ~k! ;

uku→0

eara

kD
2

k2 ~74!

and we retrieve Eqs.~71! and~72! from Eq.~2!. Thus, at the
first two orders in density, the tails coincide with those of t
convolution~2! with adequate charge summation.

At the first order in density we get Eqs.~13!, ~14!, and
~15!. Comparison of Eq.~15! with the linear term with re-
spect to the given chargeea in Eq. ~13! shows that the alge
braic tails of the linearly induced charge density and of
particle-charge correlation satisfy the more general relati

(
g

egrg
ind~r ;ea!U

ra50

5 lim
ra→0

(
g

egrag
~2!T~r !

ra
, ~75!
-

e

c.

e

e

which is valid at any distance. Equation~75! also holds for
any finite chargeea and we derive from Eq.~13! that the
B!$0%/r 8 tail of the charge density induced by a finite exte
nal chargeq reads

(
g

egrg
ind~r ;q!U

B050

;
r→`

1

r 8

1

32p
b3\4

ke/m
4

kD
4 Fq2

kD
2

ke/m
2

q2

mq
G ,

~76!

wheremq is the mass of the particle with chargeq. At the
first orderr0 the response to an external chargeq involves
both a linear contribution inq and a quadratic one. Howeve
the latter term exists only if the external charge is quantum
according to its origin from the formula~66!—because a
classical external charge corresponds to the limitmq going to
infinity.

D. Diagrams that contribute at order r3

First, we recall that in order to perform density expa
sions we have introduced bondsFRT5FR2@Fcc#2/2 and
@Fcc#2/2 to calculate the integrated functions that are
volved in the 1/r 6 tail. *dr @Fcc#2(r ) is exactly of order
1/r loop

1/2 whereas the low-density expansion of*drFRT(r )
starts at orderr loop

0 . At orderr loop
3 the purely algebraic term

in the 1/r 6 tail of the particle-particle correlation may have
structure with either two or three intermediate points. W
first consider structures~56!–~58!, where the quantum inter
action involves only two intermediate points, then the stru
ture ~59! where three intermediate points appear in the qu
tum term.

At order r3 a tail of the form~56! arises from the mos
simple diagram,r@FR2W#r, either with pa51 andr(ja)
expanded up to orderr2 or with pa52 andra,2(X2) taken
at orderr2. According to Eq.~41!, whenpa51 the r3 tail
is proportional to\4 times diagonal matrix elements o
exp@2bHag8# and exchange matrix elements
exp@2bHaa#. Whenpa52, according to Eq.~43!, there ap-
pears only a term proportional to\4 times an exchange con
tribution.

At order r3, all density weights in Eqs.~57!–~59! are
r loop

$1% , and only loops withp51 do contribute at orderr3. A
tail of the form~57! appears among the various 1/r 6 tails of
r@FR* SD* rFR* SD* FR#r. At order r3 one of these tails
~namely, the tail where everySD is replaced by its partd)
gives a falloff

rF1

2
@Fcc#2r*

1

2
@W3#2* r

1

2
@Fcc#2Gr. ~77!

The coefficient of this tail is purely proportional to\4.
The 1/r 6 tails of the diagramsr@FR* rFR#r and

r@FR* rFcc* rFR#r at orderr3 are of the form~58!. For
instance, at orderr3 the 1/r 6 tail of the former diagram de-
cays as

rF1

2
@W3#2* r@FRT2W#1@FRT2W#r*

1

2
@W3#2Gr.

~78!
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In fact W does not contribute to*dr @FRT2W# according to
Eq. ~35!. A new dependence upon\ appears in this tail: a
purely \6 term arises from an\4 in @W3#2 and from an\2

contained in the ‘‘diffraction’’ contribution
*drvcm(r ,x2 ,xb) in the decomposition of*drFRT(r ,x2 ,xb)
~see Sec. IV B of Paper II!.

A structure where the quantum interaction links three
termediate points, with everyp51 at orderr3, arises from
the diagramrFRr@FR* rFR#. This tail is of the form~59!
because it is the sum of three contributions,

rW3r@~FRT2W!r* W3#1rW3r@W3* r~FRT2W!#
~79a!

1rW3r@W3r* W3#. ~79b!

Equation ~79a! involves matrix elements of exp@2bHaa1
#

and exp@2bHa1g# whereas Eq.~79b! is purely proportional to

\6.
Eventually, terms of orderr3 in Aag are equal to

@aag
$3%1 f ag~\!#\41bag

$3%\6. ~80!

In Eq. ~80! f ag(\) is a function of\ which is fully quantum
because it involves either a diagonal or a nondiagonal ma
element of exp@2bHa8g8#.

VI. CASE B0Þ0

In the following, we will omit the indexesB0 . As in the
caseB050, the scheme of the discussion is that presente
Sec. III. In particular, we use the results of Paper I about
structures of diagrams that contribute to the various 1r 5

tails. Since summations over charges do not change the
ponents of the leading algebraic tails—their consequenc
the diagrammatic language is only to suppress contribut
from some diagrams—theDag

$2%( r̂ )/r 5, Da
$2%( r̂ )/r 5, and

D $2%( r̂ )/r 5 tails of rag
(2)T(r ), (gegrag

(2)T(r ), and

(a,geaegrag
(2)T(r ) ~where r̂[r /ur u), respectively, satisfy

Da
$2%5(

g
egDag

$2% ~81!

and

D $2%5(
g

eaegDag
$2% . ~82!

These identities are explicitly checked at the first two ord
in density in Appendix C.

A. Structure in Fourier space

According to the analysis in Sec. VIII B of Paper I, th
Dag /r 5 tail of rag

(2) T is given by Eq.~22! whereh is replaced
by the 1/r 5 tail Spp

(5)[0,0](r ,xa ,xb) of SD* * hnn* SD* , with
SD* (r ,x1 ;xa) defined in Eq. ~48! while SD* (k,x2 ;xb)
[SD(k,x2 ;xb)1r(x2)Fmc(r ,x2 ,xb). The 1/r 5 tail of rag

(2)T

may be written as
-

ix

in
e

x-
in
s

s

Dag

r 5
5E dxar~xa!deaa

,a

3E dxbr~xb!deab
,gSpp

~5![0,0]~r ,xa ,xb!. ~83!

Sincehnn(r ,x1 ,x2) decays at least as 1/r 3 before integration
over loop shapesXa andXb , hnn(k,x1 ,x2) contains singu-
larities from order uku0 on; thus the Fourier transform
Spp

(2)(k,xa ,xb) involves terms of ordersuku0, uku, anduku2 in
the small-k expansion ofSD* (k,x i ;x r) where x r is a root
point. According to Eqs.~26! and ~28!, SD* is even under
inversion of loop shapes of root points, while the termSD*

(q)

of order ukuq in SD* is of parity (21)q under inversion of
each internal loop shapeX i ; the latter property constrain
the parities of the tails ofhnn that may contribute after inte
gration over loop shapes. In order to simplify notations,
will not indicate the parities ofSD* but only those of

Shnn
(p)[q,q8] . A first contribution given by the dimensiona

analysis of the order inuku is

E dx1E dx2SD*
~2!~k,x1 ;xa!

3Shnn
~0![0,0]

~k,x1 ,x2!SD*
~0!~k,x2 ;xb!50. ~84!

Equation~84! vanishes, becauseShnn
(0)[0,0]

50 according to the
general study of the structure of tails before integration o
loop shapes~see Appendix A of Paper I!. Spp

(2)(k,xa ,xb) may
be written as the sum of three contributions,

E dx1E dx2r~x1!Fcm~1!~k,xa ,x1!

3Shnn
~0![1,1]

~k,x1 ,x2!r~x2!Fmc~1!~k,x2 ,xb!, ~85a!

E dx1E dx2r~x1!Fcm~1!~k,xa ,x1!Shnn
~1![1,0]

~k,x1 ,x2!

3SD
~0!~k,x2 ;xb!1sym. term, ~85b!

E dx1E dx2SD
~0!~k,x1 ;xa!Shnn

~2![0,0]
~k,x1 ,x2!

3SD
~0!~k,x2 ;xb!, ~85c!

where we have used the identitiesSD*
(0)5SD

(0) and
SD*

(1)(k,x i ;x r)5r(x1)Fcm(1)(k,x i ;x r). The symmetric
term in Eq.~85b! is obtained by exchanging the roles ofxa
andxb .

B. Density expansions

1. Loop-density expansions

All dressings in the nonvanishing contributions~85!,
namely,SD*

(0)(k,x1 ;xa) andSD*
(1)(k,x1 ;xa), are exactly of

order zero in density. We notice that, on the contrary,SD*
(2q)

andSD*
(2q11) with q>1 starts at orderO(r loop

2q ), according
to Eqs. ~26! and ~28! and the expansion of@1
1(k2/k2)#21. For instance,SD*

(2)(k,x1 ;xa) is the sum of
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two terms of ordersr loop
21 andr loop

0 , respectively, butSD*
(2) is

involved in faster falloffs than those considered here,
cause of parity arguments@see Eq.~84!#.

As a consequence, at the lowest order inr loop,
Spp

(2)(k,xa ,xb) is merely given by Eq.~85! wherehnn is re-
placed by its value at first order inr loop. The first term in the
low-density expansions of the 1/r 3, 1/r 4, and 1/r 5 tails of
hnn are of orderr loop

0 . They are reduced to the bondW
possibly convoluted with bondsrFcc or rFmc, because the
first term in thek expansion ofrFcc or rFmc is of order
r loop

0 . In order to take advantage of parity arguments, it
convenient to rewriteW given in Eq.~32! asW5(n53

` Wn ,
with Wn decaying as 1/r n, and to push the decompositio
further by writing

Wn~Li ,Lj !5 (
l 51

n22
1

l ! ~n212 l !!
wn

[ l ,n212 l ]~k,X i ,X j !,

~86!

where

wn
[ l i ,l j ]~k,X i ,X j !52bea i

ea j
E

0

pi
dtE

0

pj
dt8$d„@t2P~t!#

2@t82P~t8!#…21%@ ik•X i~t!# l i

3@2 ik•X j~t8!# l j
4p

k2
~87!

is of parity (21)l i @(21)l j # with respect toX i (X j ). With
these definitions, we get in Fourier space

Shnn
~0![1,1]u loop

$0% 5w3
[1,1]5w3 , ~88!

Shnn
~1![1,0]u loop

$0% 5
1

2
w4

[1,2] , ~89!

Shnn
~2![0,0]u loop

$0% 5
1

4
w5

[2,2] . ~90!

At next order in loop density

Shnn
~0![1,1]u loop

$1/2%50, ~91!

Shnn
~1![1,0]u loop

$1/2%5H 1

2
w4

[1,2]1F1

2
w4

[1,2]rFcc~0!1w3
[1,1]rFmc~1!G J

3r
1

2
@Fcc#2~k50!, ~92!

Shnn
~2![0,0]u loop

$1/2%5H 1

4
w5

[2,2]1F1

4
w5

[2,2]rFcc~0!

1
1

2
w4

[2,1]rFmc~1!G J r
1

2
@Fcc#2~k50!

1sym. term. ~93!

In Eqs. ~92! and ~93! charge indexes and summation ov
species of intermediate points are implicit as in the notat
of convolutions in position space introduced in Eq.~25!.
-

s

n

2. Cancellations at the first two orders in particle density

At the first two orders in density, many contributions
Spp

(5)(r ) cancel each other by virtue of the identity

E DB0
~j!H 1

2
@k•j~s!#22@k•j~s!#E

0

1

ds8@k•j~s8!#J 50.

~94!

Indeed, the left-hand side of~94! is equal to

@k#m@k#nF1

2
covmn

a ~s,s8;B0!2E
0

1

ds8covmn
a ~s,s8;B0!G ,

~95!

with an implicit summation over the space indicesm andn
(m,n51,2,3). The property covxy

a (s,s8;B0)5

2covyx
a (s,s8;B0) derived in Sec. V C in Paper I implies tha

@k#m@k#ncovmn
a ~s,s8;B0!5@k#m

2 covmm
a ~s,s8;B0!. ~96!

Then we use the following property, which can be deriv
from the explicit value of the covariance given in Sec. III
of Paper II:

E
0

1

ds8covxx
a ~s,s8;B0!5

1

2
covxx

a ~s,s;B0!. ~97!

Of course, this identity is also valid for covzz(s,s8)
5 limB0→0covxx

a (s,s8;B0). Then, Eq.~94! is proved.
The identity~94! allows one to show that at first order i

density,

Spp
~5![0,0]~r ,ja ,jb!u$0%5

1

4
w5

[2,2]~r ,ja ,jb!. ~98!

The reasons for this simple expression are the followi
Spp

(5)[0,0](r ,xa ,xb) is given by Eq. ~85! where SD
(0) and

rFmc(1) are exactly of orderr loop
0 . In order to prove Eq.~98!,

we reorganize the effective contributions coming fro
SD* * W* SD* in order to exhibit the combination~94!. In Fou-
rier space we get the sum of (1/4)w5

[2,2] plus

Fcm~1!rFw3
[1,1]rFmc~1!1

1

2
w4

[1,2]rFcc~0!G ~99a!

1
1

2
Fcc~0!rFw4

[2,1]rFmc~1!1
1

2
w5

[2,2]rFcc~0!G ~99b!

1
1

2Fw4
[2,1]rFmc~1!1

1

2
w5

[2,2]rFcc~0!G1~sym. term!,

~99c!

where ~sym. term! denotes the symmetric term
(1/2)@Fcm(1)rw4

[1,2]1(1/2)Fcc(0)rw5
[2,2]#. At first order in

density, only loops with p51 contribute. Since
Fcc(0)(k,a,a8) andFcm(1)(k,jr ,j) @or Fmc(1)(k,j,jr)] only
differ by an extra factor7 i *0

1dslaj(s)•k, the definition
~87! and the property~94! imply that only the term~98! does
contribute to the 1/r 5 tail Spp

(5)[0,0] at the first order in density
r.
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At order r5/2 the same cancellation mechanism impli
that the 1/r 5 tail Spp

(5)[0,0] comes only from

1

4
w5

[2,2]r
1

2E dr @Fcc~r !#2SD
~0!1sym. term. ~100!

This cancellation mechanism seems to be specific to the
order in density. It still partially operates at orderr5/2, but
from orderr3 property~94! cannot be applied when the ex
pansion ofr(j) is used at orders higher thanr or when
ra,2(X2) occurs.

3. Particle-particle correlation at the first order in density

In the case of the particle-particle correlation, theDag /r 5

tail is given by Eq. ~83! where, at the first order in
r, Spp

(5)(r ,xa ,xb) is reduced to (1/4)w5
[2,2] , according to Eq.

~98!, with pa5pb51. The Fourier transform of theDag
$2%/r 5

tail at the first orderr2 reads

E
0

1

ds1E
0

1

ds2@d~s12s2!21#Fag
pp~k,s1 ,s2!, ~101!

where

Fag
pp~k,s1 ,s2![2rargbeaegla

2lg
2

3H 1

4E Da,B0
~j1!E Dg,B0

~j2!

3@k•j1~s1!#2@k•j2~s2!#2
4p

k2 J . ~102!

In Eq. ~102! we have added the indexa in the notation of the
measureDB0

(j) in order to recall the dependence of th

measure upon the species whenB0Þ0. Integrations overj1
and j2 lead to the appearance of covariances of Brown
bridges in the presence ofB0 . According to Eq.~96! and
covxx

a 5covyy
a ,

@k#m@k#ncovmn
a ~s,s8;B0!5k2covxx

a ~s,s8;B050!

2@k#z
2dCa~s,s8;B0!,

~103!

where

dCa~s,s8;B0![covxx
a ~s,s8;B0!2covzz

a ~s,s8;B0!

5covxx
a ~s,s8;B0!2covxx

a ~s,s8;B050!.

~104!

So the nonanalytic term in$•••% in Eq. ~102! is equal to

4p
@k#z

4

k2

1

4
dCa~s1 ,s1!dCg~s2 ,s2!. ~105!

We notice that 4p@k#z
4/k2 is the Fourier transform of

]zzzzS 1

r D524
P4~cosu!

r 5 ~106!
st

n

and, according to the value of the de Broglie thermal wa
lengthla5Ab\2/ma, we get Eq.~8! where

A~uCa ,uCg![6E
0

1

ds1E
0

1

ds2@d~s12s2!21#

3dCa~s1 ,s1!dCg~s2 ,s2!. ~107!

According to Eqs.~83!, ~100!, and ~60! Dag
$5/2%/r 5 may be

seen as arising from the convolution

ra(
a2

@2bVaa2

eff~5!u$1/2%#* SD,a2g
cl

1rg(
a1

SD,aa1

cl
* @2bVa1g

eff~5!u$1/2%#, ~108!

with

Va1a2

eff~5!(r )u$1/2%5(
a8

Va1a8
eff~5!

~r !U $0%

ra8E dx
1

2
@FD,a8a2

cc
~x!#2.

~109!

Now, we turn to the explicit values of theDag /r 5 tail at
the first two orders in density.Dag

$n% with n52,5/2 may be
written in the concise forms

Dag
$n%52b3\4P4~cosu!rargeaegD ag

$n22% , ~110!

with

D ag
$0%5

1

mamg
A~uCa ,uCg! ~111!

and

D ag
$1/2%5

pb2

kD

1

ma

F eg2

4pb(
g8

rg8eg8
3

kD
2

G
3(

a2

ra2

ea2

3

ma2

A~uCa2
,uCa!1sym. term.

~112!

In Eq. ~112! the symmetric term is obtained by exchangi
the roles ofa and g. Comparison of Eqs.~111! and ~112!
shows that, according to Eq.~110!,

Dag
$5/2%52

pb2

kD

H rgeg
F 4pb(

g8
rg8eg8

3

kD
2

2eg
G(

a2

ea2

2 Daa2

$2%

1raea
F 4pb(

g8
rg8eg8

3

kD
2

2ea
G(

a2

ea2

2 Dga2

$2% J .

~113!

The analytical expression ofA(uCa ,uCg) is determined
by dynamics of independent charges in a magnetic field.
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covariance that characterizes this dynamics has been ex
itly derived in Appendix A of Paper II. The values of intere
are

covxx
a ~s,s;B0!5

1

uCasinhuCa
sinh~suCa!sinh~@12s#uCa!

~114!

and

E
0

1

dscovxx
a ~s,s!5

1

2uCa
L~uCa!, ~115!

whereL(uCa)5cothuCa2(1/uCa) is the Langevin function.
By using the definition~104! and Eq.~115! we get

dCa[E
0

1

dsdCa~s,s!5
1

2uCa
L [3]~uCa!, ~116!

with L [3] (uCa)[L(uCa)2uCa/3 defined in Sec. II B of Pa-
per II. The value ofA(uCa ,uCg) is given in Eq.~9!. In the
case of particles with the sameuCa’s, a straightforward limit
of Eq. ~9! leads to

A~uCa ,uCa!5
3

2H 1

2uCa
2 @cothuCa#21

5

2uCa
3

cothuCa1
1

45

2
7

6uCa
2

2
3

uCa
4 J . ~117!

4. Induced charge density

The D!/r 5 tail of the ratio(gegrg
ind,L(r )/dq for the lin-

early induced charge arises from diagrams which are dif
ent from those involved in theDa /r 5 tail of the particle-
charge correlation for finite charges of the plasma.D!/r 5 is
given by Eq.~23! whereGh(k,xa) is replaced by the Fourie
transformSGh

(4)(k,xa) of its 1/r 7 tail SGh

(7)(r ,xa),

D!

r 5
5F21F2

4pb

k2 E dxar~xa!paeaa
SGh

~4!~k,xa!G ~r !.

~118!

In fact, according to Sec. VIII C of Paper I,SGh

(7)(r ,xa) arises

only from the part of h equal to Fcmr* hnn* @SD**
1rFmc* rFmc#. In other words,SGh

(4)(k,xa) is the nonana-

lytic term of orderuku4 in

E dx1r~x1!E dx2Fcm~k,xa ,x1!

3hnn~k,x1 ,x2!G$SD** 1rFmc* rFmc%~k,x2!. ~119!

A straightforward calculation leads to

G$SD** 1rFmc* rFmc%~k,x2!

5
r~x2!

k2 ea2
p2k2F11E

0

p2dt

p2
ik•X2~t!G1O~ uku4!.

~120!
lic-

r-

Henceforth, sinceFcm(k,xa ,x1)5O(uku) and according to
parity arguments,

SGh

~4!~k,xa!5k2E dx1r~x1!E dx2

r~x2!

k2 ea2
p2

3Fcm~1!~k,xa ,x1!H Shnn
~1![1,0]

~k,x1 ,x2!

1Shnn
~0![1,1]

~k,x1 ,x2!E
0

p2dt2

p2
ik•X2~t2!J .

~121!

The Fourier transform ofD!/r 5 tail is given by Eqs.~118!
and ~121!.

At the first two ordersr loop andr loop
3/2 , we insert Eqs.~28!

in ~121!. We use Eqs.~88! and~89! for contributions of order
r loop and Eqs.~91! and~92! for terms of orderr loop

3/2 . At order
r loop, D!/r 5 is the inverse Fourier transform of

2
4pb

k2 E dx1r~x1!ea1
p1

3E dx2r~x2!ea2
p2E

0

p1dt1

p1
@ ik•X1~t1!#

3H 1

2
w4

[1,2]~k,x1 ,x2!

1w3~k,x1 ,x2!E
0

p2dt2

p2
ik•X2~t2!J . ~122!

At next orderr loop
3/2 , it is given by Eq.~122! where$•••% is

replaced only by the value~92! of Shnn
(1)[1,0](k,x1 ,x2)u loop

$1/2% .
As a consequence, only loops withp51 are involved at
ordersr andr3/2.

According to the cancellation mechanism~94!, the tail
~122! of the induced charge density, which is derived fro
the linear response theory in the loop formalism@9#, vanishes
at orderr,

D!$2%50, ~123!

and appears only at higher orders in density. This result
be retrieved from Eq. ~75!: though the part $r@Fcc

1Fcm#r* hnn* rFmc%(r ,xa ,xb) in SD* * hnn* rFmc is linear
in ea , this linear term does not contribute at orderr2 to
(gegrag

(2)T(r ) because of the cancellation mechanism~94! at
low density.

The latter result is in agreement with the valueDa
$2%

5(gegDag
$2% for the coefficient of the 1/r 5 tail of the particle-

charge correlation at the first orderr2. Indeed, the infinitesi-
mal induced charge is generically given by the linear term
ea in the particle-charge correlation(gegrag

(2)T(r )/ra , as re-
called in Eq.~75!. Thus

D!5 lim
ea→0

1

ea
lim

ra→0

(
g

egDag

ra
. ~124!
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Indeed, the coefficient of the 1/r 5 tail of (gegrag
(2)T(r ) starts

at orderr2 and involves the chargeea throughA(uCa ,uCg)
at this order. WhenuCa5(b\B0/2mac)ea tends to zero at
uCg fixed,

A~uCa ,uCg! ;
uCa→0

uCa
2 1

4uCg
5 F2cothuCg1

1

uCg
1

uCg

3

2
uCg

3

45
1

2uCg
5

945 G . ~125!

ThusDa
$2% is nonlinear inea whenea tends to zero, andD!

vanishes at orderr. According to the relations~75! and
Dg

$2%5(gegDag
$2% , together with Eqs.~110! and ~125!, the

nonlinearly induced charge at orderr is

(
g

egrg
ind~r ;q!uB0

$1%52b3\4
q

mq
F(

g
rg

eg
2

mg
A~uCq ,uCg!G

3
P4~cosu!

r 5 . ~126!

It is cubic in q/mq whenq/mq vanishes.
We now turn to the tail of the linearly induced charg

density at next orderr3/2. Since only loops withp51 con-
tribute at this order, the cancellation mechanism~94! at first
order in density operates and only the p
(1/2)w4

[1,2]
* r@Fcc#2/2 appears in Shnn

(1)[1,0](k,x1 ,x2)u$1/2%

given in Eq. ~92!. According to Eqs.~121! and ~87!, the
Fourier transform ofD!$3/2%/r 5 comes from

2
pb2

kD

4pb(
g8

rg8eg8
3

kD
2 (

g
eg(

a2

ea2

2 E
0

1

ds1E
0

1

ds2

3@d~s12s2!21#Fga2

ind,L~k,s1 ,s2!, ~127!

whereFga2

ind,L is defined asFga2

pp given in Eq.~102! with the

$•••% replaced by

H 1

2E0

1

dsE Dg,B0
~j1!E Da2 ,B0

~j2!@k•j1~s!#@k•j1~s1!#

3@k•j2~s2!#2
4p

k2 J . ~128!

The nonanalytic term in Eq.~128! is similar to the nonana
lytic expression~105! with 2*0

1dsdCg(s,s1) in place of
dCa(s1 ,s1). After integration overs the factor 2 is compen
sated by the factor 1/2 arising from Eq.~97! and comparison
of Eq. ~127! with Eq. ~113! shows that the identity~124! is
indeed satisfied at orderr3/2. The explicit value ofD!$3/2% is
then derived from Eq.~113! with the result

D!$3/2%524p2b3

(
g8

rg8eg8
3

kD
4 (

a8g

egea8
2 Dga8

$2% . ~129!
t

C. Weak or strong magnetic field

In the limit of a weak fieldB0 , A(uCa ,uCg) behaves as
(1/3150)uCa

2 uCg
2 and Dag is proportional to\8B0

4 . More
precisely,

rag
~2!T~r !uB0

;
r→`

2rarg

1

50 400
b7\8

3S ea

ma
D 3S eg

mg
D 3S B0

c D 4 P4~cosu!

r 5 .

~130!

In terms of dimensionless parameters

Dag

rarg
}a5GS la

a D 2S lg

a D 2

~bmBaB0!2~bmBgB0!2.

~131!

In the strong field limit,A(uCa ,uCg) tends to 1/30, andDag
becomes independent fromB0 ,

rag
~2!T~r !uB0

;
r→`

2rarg

1

30
b3\4

ea

ma

eg

mg

3F1260
c2

b2\2B0
2S ma

2

ea
2

1
mg

2

eg
2 D 1OS 1

B0
4D G

3
P4~cosu!

r 5 . ~132!

We notice that the limits whereea tends to zero or whereB0
goes to infinity do not commute, sinceuC goes to zero in the
first case and to infinity in the second case.

VII. ONE-COMPONENT PLASMA

In order to get correlations for the OCP with movin
chargese2 from expressions calculated for a two-compone
plasma~TCP!, we first insert the local neutrality relation i
order to replace every producte1r1 by 2e2r2 . In a sec-
ond step, we use the same procedure as in Sec. VI A of P
II: m1 goes to infinity, thene1 vanishes whiler1 becomes
infinite. Moreover, we rather consider the following objec
which remain finite even if one density goes to infinity: th
Ursell functionhag5rag

(2)T(r )/rarg ,

(
g

egrghag52e2r2(
g

sgn~eg!hag ~133!

and

(
a,g

eaegrarghag5~e2r2!2(
ag

sgn~ea!sgn~eg!hag ,

~134!

where sgn(ea) denotes the sign ofea . In the limit of the
OCP, onlyh22 is expected to survive and the left-hand si
of Eqs.~133! and~134! should be reduced toe2r2h22 and
(e2r2)2h22 , respectively.
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A. In the absence of B0

WhenB050, for a two-component plasma, according
Eqs.~69!, ~13!, and~14!,

hag~r !uB050 ;
r→`

b4\4

240 S e1e2

e11ue2u D
2F e1

m1
1

ue2u
m2

G2 1

r 6 ,

~135!

(
g

egrghag~r !uB050 ;
r→`

2
b3\4

32p

e1ue2u

~e11ue2u!2

3F e1

m1
2

ue2u
m2

GF e1

m1
1

ue2u
m2

G2 1

r 8 ,

~136!

(
ag

eaegrag
~2!T~r !uB050 ;

r→`

7b2\4

16p2

1

r 10S 1

e11ue2u D
2

3F e1
2

m1
2

e2
2

m2
G2

. ~137!

In the limit of the OCP taken as recalled above, the 1r 6

tail of rag
(2)T/rarg and the 1/r 8 tail of (gegrag

(2)T/ra , derived
from Eqs.~135! and~136!, respectively, vanish whatever th
values ofa or g, as it should. Indeed, onlyh22 is expected
to survive andh22 , which is in fact a charge-charge corr
lation, decays as fast as 1/r 10, according to\ expansions
@11,12# or perturbative results in the coupling constant@13#.
Besides,(a,geaegrag

(2)T tends toe2
2 r OCP

(2)T and, according to
Eq. ~137!,

e2
2 rOCP

~2!T~r !uB050 ;
r→`

7

16p2 b2\4
e2

4

m2
2

1

r 10
. ~138!

B. In the presence of B0

In this section, we compare our low-density result w
the algebraic tail derived from the low-density expansion
the exact sum rule~16!. The singular term of orderuku2 in the
Fourier transform ofSOCP(r )uB0

5r2d(r )1r OCP
(2)T (r ) is de-

noted bySOCPsing
(2) (k)uB0

.
First, we calculate the low-density limit o

SOCPsing
(2) (k)uB0

, which is derived from our low-density pat

integral formalism. Ther2 term,SOCPsing
(2) (k)uB0

$2% , in the low-

density expansion of the nonanalytic term of ord
uku2, SOCPsing

(2) (k)uB0
, is given by the Fourier transform of th

DOCP
$2% /r 5 tail calculated at the first order in density. The low

densityDOCP
$2% /r 5 tail of the OCP is derived from the result fo

a two-component plasma, as in the absence ofB0 . Accord-
ing to Eq. ~8!, the @Dag

$2%/rarg#/r 5 tail of hag for a TCP is
proportional to@eaeg /mamg#A(uCa ,uCg). In the limiting
process,m1 goes to infinity thene1 vanishes, so thatuC1

tends to zero; thus, according to Eq.~125!, the tails ofh11

andh12 vanish whileh OCP5h22 . According to Eq.~106!
and @k#z

4/k25uku2(cosuk)
4, the Fourier transform of the

DOCP
$2% /r 5 tail ~8! reads
f

r

4pb
e2

2 SOCPsing
~2! ~k!uB0

$2%

k2
52

1

4!
A OCP~uC!~b\vp!4~cosuk!4,

~139!

with uC5b\vc/25b\e2B0/2m2c and the plasma fre-
quencyvp5A4pe2

2 r2m2,

A OCP~uC!5
1

30
1

3

4uC
2 ~cothuC!21

15

4uC
3
cothuC

2
7

4uC
2

2
9

2uC
4

. ~140!

Second, we exhibit the nonanalytic contribution in ther2

term inSOCP
(2) (k)uB0

which is given by the low-density limit of
the exact sum rule~16!. The latter expression is expanded u
to order r2 at uC fixed. In other words, the expansion
performed with respect to the dimensionless param
vp

2/vc
254pr2m2c2/B0

2 which appears in Eq.~17!. We ob-
tain the structure

4pb
e2

2 SOCP
~2! ~k!

k2
511r@a$1%~uC!1b$1%~uC!~cosuk!2#

1r2@a$2%~uC!1b$2%~uC!~cosuk!2

1c$2%~uC!~cosuk!4#1o~r2!, ~141!

wherea$n%, b$n%, andc$n% are functions of the single variabl
uC and o(r2) denotes a term of order greater thanr2. The
term of orderr in 4pbe2SOCP

(2) (k), though anisotropic, is
analytical, as it should be, while the term of orderr2 con-
tains a nonanalytic term,r2c$2%(uC)(cosuk)

4uku2. The latter
one does coincide with our low-density result~139!.

VIII. CONCLUSION

A. Compared qualitative results

1. Sign of the interaction

WhenB050, in the case of a two-component plasma
chargese1 ande2 , with massesm1 andm2 , the effective
interaction associated with the 1/r 6 tail of the particle-
particle correlation is attractive at the first two orders in de
sity, whatever the signs of charges.@Indeed, the neutrality
relatione2r252e1r1 implies that the coefficientsAag

$n% at
orderrn, with n52,5/2, are positive according to Eqs.~69!
and ~70!.#

The peculiar identity~70! between allAag
$n%/rarg with n

52,5/2 is due to a classical contribution in the screening
every quantum charge by the surrounding plasma. It is
longer satisfied at higher orders in densityrn with n>3,
because then quantum dynamical and statistical effects
involved and destroy the symmetry between various spe
of particles, as shown in Sec. V D.

In the presence ofB0 , the sign ofP4(cosu) varies whenu
ranges from 0 top, so that the effective force is either a
tractive or repulsive according to the relative orientationu of
r andB0 as well as according to the relative signs of charg
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For instance, whenu50 P4(cosu)51, the force is attractive
~repulsive! between charges with opposite~same! signs;
whenu5p/3, P4(cosu),0 and previous results are reverse

2. Dependence upon thermodynamic parameters

First, we consider the variation of the coefficients of
gebraic tails with respect to the temperatureT and the den-
sity r. Up to a numerical multiplicative factor that involve
masses, the dimensionless coefficientuAagu is proportional to

uAagu}G2S l

aD 4

, ~142!

with notations of Sec. II C. (l is a generic notation for the d
Broglie thermal wave length.! uDagu, which has the dimen-
sion of an inverse length, has a similar dependence,

uDagu}GS l

aD 4 1

a
. ~143!

Henceforth,uAagu and uDagu have the same sense of vari
tion with r and T. They both decrease as the density
lowered or as the temperature becomes higher. The rela
corrections may be expressed in terms of dimensionless
rameters which are indeed small in the regimeG!1 and
(l/a)!1.

Second, we address the dependence upon the intens
B0 . When B0 is weak, Dag is proportional to \8B0

4 ,
whereas, in the strong field limit, it becomes independ
from B0 and is only of order\4. The coefficientAag of the
1/r 6 tail whenB050 @2# has the same dependence upon\ as
Dag in the strong field limit. An interpretation is that, i
some sense, the 1/r 5 tail that appears only in the presence
B0 is more quantum than the 1/r 6 tail, because statistica
effects of B0 are purely quantum~see also Sec. VIII D!.
However, when the intensity ofB0 increases sufficiently, a
new effect appears: a strong fieldB0 enforces a localization
that drives the system into a semiclassical regime~see Sec.
VI B of Paper II!, and the 1/r 5 tail becomes ‘‘less quantum’
as regards its order in\.

B. Algebraic screening

Algebraic screening at large distances is compatible w
the sum rules enforced by both internal and perfect exte
screening which must be satisfied in any classical as we
in any quantum regime. As recalled in Sec. II B of Pape
internal screening means that

E dr(
a

eaSag~r !50 ~144!

and

E drr (
a

eaSag~r !50. ~145!

On the other hand, perfect external screening refers to
fact that the total charge induced in the plasma in the vicin
of an infinitesimal external chargedq is exactly equal to
2dq.
.

-

ve
a-

of

t

h
al
as
I

he
y

1. Consequence of classical internal screening

When B050, internal screening of monopole-monopo
and monopole-multipole interactions plays a role in the c
cade of power laws as mentioned in the Introduction.~See
also Sec. IV B of Ref.@10#.! From a technical point of view,
at finite density, the screening of the total charge of a lo
surrounded by its Debye polarization cloud~corresponding
to the bondFcc) combines with diffraction effects describe
by a monopole-dipole Debye interaction~contained in the
bondFcm) and this interplay leads to cancellations of som
tails when particle-charge or charge-charge correlations
considered.

At the first two orders in density, it happens that only t
Debye approximationSag,D

cl of the classical structure facto
is involved in the mechanism responsible for this casca
Indeed, at the first two orders in density, the exact expres
for Aag

$n%/r 6, with n52,5/2, is equal to the tail of the convo
lution ~2!. The Debye-Hu¨ckel structure factor by itself satis
fies both the charge and dipole sum rules~144! and ~145!,
because thek expansion of(gegSD,ag

cl (k) starts at orderuku2

when uku goes to zero. Henceforth, Eq.~2! leads to the cas-
cade of power laws in the low-density limit—(gegAag50
and(aeaBa , as it should—whileBa

$n21%/r 8 andC$n22%/r 10,
with n52,5/2, coincide with the tail of the convolution~2!
with adequate summation over charges at corresponding
ders in density.

We notice that the tail of the convolution~2! may also be
interpreted as the tail of

(
a1 ,a2

Saa1

cl,reg
* @2bVa1a2

eff~6!u$0%#* Sa2g
cl,reg, ~146!

whereSag
cl,reg is the structure factor of the corresponding cla

sical multicomponent plasma with proper short-distan
regularization. Indeed, a quantum multicomponent plasm
stable againstmacroscopiccollapse@14,15# only if all its
negative or/and positive charges obey Fermi statistics.
the contrary, a multicomponent plasma with Maxwe
Boltzmann statistics~and classical or quantum dynamics! has
a well-behaved thermodynamic limit only if the Coulom
interaction is regularized at short distances by addition o
short-ranged repulsive potentialvSR(r ). ~Quantum dynamics
alone only prevents the collapse of afinite number of point
charges with opposite signs.!

The link between Eqs.~2! and~146! is the following. The
classical structure factorSag

cl,reg may be represented by Maye
diagrams and

Sag
cl,reg5SD,ag

cl 1 (
a1 ,a2

SD,aa1

cl
* ha1a2

nncl,reg
* SD,a2g

cl , ~147!

whereha1a2

nncl,reg is defined in Sec. VIII C of Paper I. By virtue

of rotational invariance of all interactions*drr Sag
cl,reg(r )50

at any density. Besides, a remarkable fact is that, at the
two orders in density ~but not at higher orders!
*drSag

cl,reg(r )u$n% and*dr r 2Sag
cl,reg(r )u$n21%, with n51,3/2, are

determined only by the Debye potential and are independ
from vSR(r ). Indeed, according to a scaling analysis simi
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to that devised in Sec. IV A of Paper II, Eq.~147! implies
that the zero and second moments ofSag

cl,reg involve only
SD,ag

cl for n51 and

(
a1 ,a2

SD,aa1

cl
*

1

2
@FD,a1a2

cc #2* SD,a2g
cl ~148!

for n53/2. Thus the tails of Eq.~146! with or without charge
summations at the first two orders do coincide with tho
given in Eqs.~2!, ~5!, and~62!.

We notice thatSag
cl,reg satisfies both the charge and dipo

sum rules~144! and ~145! as well as the quantum structu
factor Sag , independently of the choice of the short-rang
potential vSR(r ). Henceforth, the interpretation of th
Aag

$n%/r 6 tail, with n52,5/2, by Eq.~146! is still coherent with
the cascade of inverse power laws.

2. Perfect external screening

We stress again that the basic rule of perfect screenin
an external infinitesimal chargedq is not destroyed by alge
braic quantum screening: the integral of the induced cha
in the bulk is exactly opposite todq. According to Sec.
V B 3 of Ref. @4#, at quantum as well as at classical leve
both the static charge-charge correlationC(r )
5(a,geaegSag(r ) and the response functionb*0

1dsCT(r ,s)
obey the charge and dipole~internal! sum rules~144! and
~145! satisfied by (aeaSag(r )/rg ~which describes the
chargeeg surrounded by its polarization cloud!. CT(r ,s) is
the time-ordered charge-charge correlation function
imaginary time, and the quantum linear response reads

(
g

egrg
ind,L

„k;dq~k!…

dq~k!
52

4p

k2
bE

0

1

dsCT~k,s!. ~149!

Thus the perfect external screening provides a sum rule
determines the Fourier transform of the response function
to orderuku2, wheneverB0 is switched on or not,

E
0

1

dsCT~k,s! ;
uku→0

1

4pb
k2. ~150!

We stress that in the quantum case*0
1dsCT(r ,s) is different

from the charge-charge correlationC(r ), and there is no sum
rule analogous to Eq.~150! for C(r ). However, the classica
version of Eq.~150!, the so-called Stillinger-Lovett sum rule
determines the second moment of Ccl,reg(r )
5(a,geaegSag

cl,reg(r ),

Ccl,reg~k! ;
uku→0

1

4pb
k2. ~151!

Moreover,SD,ag
cl also satisfies the classical external su

rule. Indeed, the diagrammatic relation~147! and the fact
that (gegSD,ag

cl (k) starts asuku2 whenuku goes to zero allow
SD,ag

cl itself to saturate Eq.~151!. More precisely, the Debye
charge-charge correlation(a,geaegSD,ag

cl (k) does obey Eq.
~151! because the Debye polarization cloudSD,ag

cl is such
that
e

of

e

,

n

at
p

(
g

egSD,ag
cl ~k! ;

uku→0

eara

kD
2

k2. ~152!

A consequence of Eq.~152! is that, whenB050, sincekD
2

is of orderr, the orders in density of the leading coefficien
Aag , Ba , and C in the zero-density limit also undergo
cascade.Aag , Ba , and C start at orderr2, r, and r0, re-
spectively. As a consequence, the coefficient of the cha
charge correlation does not vanish in the zero-density lim
This reflects the fact that results obtained in the limit of
infinitely dilute plasma do not coincide with calculations pe
formed for particles in the vacuum, where no screening
fect takes place.

WhenB0Þ0, there is no cascade of power laws and t
low-density limits of tailsDa /r 5 and D/r 5 of the particle-
charge and charge-charge correlations are just given by
Dag /r 5 tail of the particle-particle correlation with adequa
summation(geg and (aea , as it should. This property
holds at higher orders in density, because the diagramm
structures of the various 1/r 5 tails merely involve fewer and
fewer diagrams as charges are summed over, accordin
Sec. VIII B of Paper I. The coefficients of all these 1/r 5 tails
start at orderr2. The 1/r 5 tail at orderr2 does disappea
after integration over angles.~This was shown at any finite
density by the use of general analyticity arguments in Fou
space given in Sec. VI C of Paper I.! The latter result is
compatible with Eq.~150!.

For the OCP, as in the case of multicomponent plasm
the quantum response function does satisfy the above pe
screening sum rule~150! ~see page 1122 of Ref.@4#!. More-
over, in this system, the extra exact sum rule~16! determines
the coefficient of the term of orderuku2 in the charge-charge
correlationCOCP(k)5e2SOCP(k) itself, because the motion
of the center of mass happens to move independently in
harmonic force created by the background. We notice t
there exists another constraint in the absence ofB0 ~see page
166 of Ref.@6#!: the mechanical balance enforces the va
of the uku2 term in (gegrg

ind,L
„k;dq(k)…uB050 /dq(k), and

subsequently, the value of theuku4 term in *0
1dsCOCPuB050 ,

by virtue of Eq.~149!. The latter terms are analytic, which
in agreement with the fact that the charge dens
(gegrg

ind,L(r ;dq) induced by a point chargedq decays faster
than 1/r 5 whenB050, in fact as 1/r 8 @13#.

C. Comparison with \ expansions

In the case of a multicomponent plasma,\ expansions
correspond to MB statistics and they are allowed only if t
Coulomb potential is regularized at the origin~in order to
avoid the macroscopic collapse of the multicompon
plasma, whatever the latter is in a classical or in a quan
dynamical regime!. For instance, point particles may be r
placed by spheres described by a repulsive hard- or soft-
potentialvSR(r ) ~see Sec. VIII C of Paper I!. In fact, \ ex-
pansions for correlations exist in the literature only in t
caseB050 @12#. ~However, some attempts to investigate t
caseB0Þ0 are in progress@16#.!

WhenB050, at the first order in\, namely,\4, the 1/r 6

tail comes from the convolution~146!. Indeed, the semiclas
sical expansions take the form@11,12#
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rag
~2!T~r !5rag

~2!T~r !ucl1\2Rag
~2!~r !1\4Rag

~4!~r !1O~\6!.
~153!

The classical contribution and the first quantum correct
\2Rag

(2) decay faster than any inverse power law whereas
corrections of orders higher than\2 decrease as 1/r 6. More
precisely, the tail of the semiclassical correlation\4Rag

(4)(r )
at order\4 comes in fact from Eq.~146! as the exact low-
density tailsAag

$2%/r 6 andAag
$5/2%/r 6. Henceforth, the cascade o

power laws in the semiclassical limit@12# is induced by the
same mechanism as in the low-density limit of the fu
quantum regime~see Sec. VIII B 1!.

Moreover, as argued in Sec. VI B of Paper II, there exi
a regime of physical parameters where both semiclass
and low-density expansions may be performed. Since
effective potentialVag

eff(6)u$0% is the only quantum term in Eq
~146! and is exactly proportional to\4, the first two terms
Aag

$2%/r 6 andAag
$5/2%/r 6 in the low-density expansion of the ex

act Aag /r 6 tail of the correlation coincide with the first tw
terms\4Tag

(4)u$2%/r 6 and\4Tag
(4)u$5/2%/r 6 in the low-density ex-

pansion of the\4Tag
(4)/r 6 tail of the semiclassical correlatio

at order\4.
In the case of the OCP, the low-density limit~138! coin-

cides with the first term in the Wigner-Kirkwood expansio
of the coefficient of the 1/r 10 tail @11–13,17#, namely, the
term of order\4. We recall that this expansion is legitima
for the OCP, because the latter system has a well-beha
thermodynamic limit even in the Maxwell-Boltzmann a
proximation. As in the case of multicomponent plasmas\
and r expansions may be performed simultaneously in
low-degeneracy regime with weakly quantum dynamics a
weak Coulomb coupling~see Sec. VI B of Paper II!. We
notice that this coincidence between ther2 term in the low-
density expansion and the\4 term in the semiclassical ex
pansion turn out both for the coefficient of the 1/r 10 tail of
the correlation as well as for the free-energy express
Since the system handled in the semiclassical derivation
OCP from the beginning of calculations, the agreement
tween formulas obtained from different descriptions of t
OCP is another argument for the validity of the proced
used to obtain results for the OCP from expressions der
for a TCP.

D. Intrinsic quantum nature of tails induced only by B0

1. Comparison with a simple model

A deeper insight into the structures of the 1/r 6 tail ~2! and
the 1/r 5 tail ~10! of rag

(2)T(r ) with or without B0 may be
obtained from the comparison with the simple model of t
quantum charges embedded in a classical plasma.
model has been discussed in Sec. V of Paper I. The effec
interactionU12

eff(r ) between the two quantum charges in t
model decays algebraically at large distancesr . According to
Sec. V B of Paper I,

U12
eff~r !uB050 ;

r→`

V̄a1a2

eff~6!~r !u$0%, ~154!

whereVa1a2

eff(6)u$0% is given by Eq.~5! with the measureD̄(ji)

in place ofD(ji). D̄(ji) involves the electrostatic free en
n
e

s
al
e

ed

a
d

n.
a

e-

e
d

is
ve

ergy Fi ,elect
(1) (ji) for the immersion of a single closed curv

l iji into the classical gas. In the same way,

U12
eff~r !uB0

;
r→`

V̄a1a2

eff~5!~r !u$0%, ~155!

where V̄a1a2

eff(5)u$0% is given by Eq. ~11! with the measure

DB0
(ji) in place ofDB0

(ji).
In a weak-coupling regime for the classical plasm

namely, at sufficiently low density or high temperatur
Fi ,elect

(1) (ji) tends to its Debye expression@12#

Fi ,D~ji !5
ei

2

2 E0

1

dsE
0

1

ds8
exp@2kDl i uji~s!2ji~s8!u#21

l i uji~s!2ji~s8!u
.

~156!

In the zero-coupling limit,kD vanishes. ThenFi ,D(ji) tends
to the value2kDei

2/2, which is independent from the loo
shapeji , so that

DB0
~ji ! ;

kD→0
DB0

~ji !. ~157!

~This result would also be obtained by considering a se
classical limit for the two quantum charges, in which casel i
goes to zero.!

When B050, comparison of Eqs.~154! and ~157! with
Eq. ~2! shows that the 1/r 6 leading tail of2bU12

eff(r )uB050 in
the weak-coupling limit for the classical plasma does n
coincide with the exact low-density@Aa1a2

/ra1
ra2

#/r 6 tail

of the Ursell functionha1a2
(r )uB050 in the fully quantum

many-body problem. Indeed,Aa1a2
/r 6 contains extra contri-

butions with respect to2ra1
ra2

bVa1a2

eff(6)(r )u$0% arising from

bondsFcc; these contributions makeAag
$2%/rarg independent

from speciesa or g, according to Eq.~70!. However, when
B0Þ0, the large-distance behavior~155! of 2bU12

eff(r )uB0
in

the same regime~157! happens to coincide with the
@Da1a2

/ra1
ra2

#/r 5 tail of the exact quantum Ursell functio

ha1a2
(r )uB0

at low density, as a result of several cancel
tions in screening contributions.

The interpretation is the following. At the first order i
density, there are indirect interactions between the t
chargesea andeg , because the latter ones interact throu
Debye screening~which gives contributions of orderr0)
with other charges of the quantum medium and these cha
have an algebraic interaction between each other. At
orders in density the involved Debye interaction is eith
purely classical~for any value ofB0) or of diffraction type
~only whenB0Þ0). In technical words, classical Debye in
teractions correspond toFcc bonds and diffraction Debye
contributions toFcm bonds, more precisely to the part ofFcm

which is a monopole-dipole Debye interaction. WhenB0
50, the quantum interaction is some kind of squared dipo
dipole potential possibly screened by one or twoFcc bonds.
When B0Þ0, the interaction is either a dipole-dipole inte
action W3 screened by twoFcm bonds, or a dipole-
quadrupole interactionW4 screened by oneFcm bond and
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possibly by aFcc bond, or a quadrupole-quadrupole bo
W5 , which is possibly screened by one or twoFcc bonds.

The indirect interactions cannot be taken into accoun
the simple model where all particles of the medium are c
sical. Besides, generically they do not cancel each other
true quantum plasma, and it is indeed the case even in
low-density limit whenB050. This can be seen in anothe
way by inspection of the intermediate formula~66!. In a limit
procedure where only particlesea andeg located at0 and r
remain quantum, a purely quantum interaction involvi
@W3#2 survives only between them, so that onlyda,a8 and
dg,g8 do contribute in Eq.~66!; then we retrieve the result o
the model in the weak-coupling limit.@We notice as a curi-
osity that for a symmetric two-component plasma, wh
e152e2 andm15m2 , we findke/m

2 50 so that, according
to Eq. ~1!, the expression of the model happens to coinc
with the quantum many-body result at low density, thou
the charges that are involved in screening are indeed q
tum.#

WhenB0Þ0, it turns out that, as a result of a cancellati
mechanism which takes place only when there is no
change effect, two given quantum charges interact dire
by a quantum interactionW5 at order r2 and, at order
r5/2, W5 is merely screened by a squared Debye interac
possibly convoluted with a single Debye term. The tw
quantum charges are not affected by the direct interact
W3 , W4 , and W5 involving charges of the medium at th
first order in density. Thus there is no indirect quantum
teraction arising only fromB0 at order r2 and the low-
density result for the true quantum many-body problem tu
out to coincide with the simple result for two quantu
charges in a classical bath.

An interpretation of the above cancellation is that, at
first order in density, which coincides with the low-dens
limit of the first order in\, only semiclassical effects appe
and the effective interaction arising from purely quantu
dynamics and statistics in the presence ofB0 cannot be con-
veyed by quantum charges of the medium which are o
semiclassically screened from the two given quantum p
ticles.

2. Linear and nonlinear effects

Now, we turn to the large-distance behavior of the
duced charge density. The order in density at which the le
ing tail of (gegrg

ind,L(r ;dq) starts is determined by the low
est order inrg for which the coefficient of the decay o
(gegrag

(2)T(r ) is linear in ea . Indeed, as already mentione
in Paper I, at finite density and at any pointr , the induced
charge density is related to the particle-charge correla
through Eq.~75!. We stress that Eq.~75! is valid even for a
finite chargeea and is not restricted to linear effects. A
finite density, the induced charge density given by the lin
response theory decays with the same inverse power la
the particle-charge correlation, as also argued in Sec. VI
of Paper I.

When B050, at first order in density, according to Eq
~2!, two particles with chargesea and eg have both direct
and indirect squared dipolar interactions with each other.
indirect interaction is conveyed by quantum chargesea i

of

the medium which interact with the considered particlesea
n
-
a

he

e

e
h
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-
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e

ly
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-
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n

r
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C

e

andeg by the Debye potential, which is linear in the charg
while the quantum interaction is quadratic in each cha
ea i

. As a consequence, theBa
$1%/r 8 tail of the particle-charge

correlation(gegrag
(2)T(r )uB050 at first order in density does

involve linear terms inea . Thus theB/r 8 decay of the lin-
early induced charge density(gegrg

ind,L(r ;dq)uB050 indeed

starts at orderr0, according to Eq.~75!.
However, whenB0Þ0, at first order in density, quantum

particles interact only through a direct effective quadrupo
quadrupole potentialVag

eff(5)u$0% @see Eq. ~11!#. Vag
eff(5)u$0%

arises from derivatives of the Coulomb interaction, which
proportional toeaeg , and from quadrupolar moments, ea
of which is controlled by the magnetic coupling consta
uCa5(b\/2mac)3eaB0 . In the limit of an infinitesimalea
at B0 fixed, the quadrupolar moment becomes quadratic
ea . Thus the effective direct quadrupolar interaction is cu
in ea whenea goes to zero, and so is theDa

$2%/r 5 tail of the
particle-charge correlation(gegrag

(2)T(r )uB0
at the first order

r2 in the same limit. As a consequence, according to
~75!, the D!/r 5 tail of the induced charge densit
(gegrg

ind,L(r ;dq)uB0
vanishes at first orderr, D!$1%50.

However, screening of Debye type is no longer complet
canceled at next order inr @see Eq.~108!#. Subsequently, a
linear contribution inea for infinitesimal ea shows up in
Da

$5/2% and theD!/r 5 tail of the induced charge given by th
linear response theory starts at orderr3/2 according to Eq.
~129!.

E. Classical time-displaced correlations

In the presence as well as in the absence ofB0 , the clas-
sical time-displaced correlations have algebraic leading
haviors with the same exponents as the corresponding q
tum static correlations. The origin of these algebraic dec
is the mass inertia which prevents any polarization clo
from following instantaneously the motion of the char
which it surrrounds, so that the average classical polariza
cloud around any set of given particles does not have
symmetry properties~absence of multipolar moments! that
would ensure the perfect screening@4#, namely, the exponen
tial clustering of particle distributions.

When B050, as shown in Ref.@12#, the classical time-
displaced particle correlation decays at least as 1/r 6 in a mul-
ticomponent plasma~according to an analysis of hierarch
equations!. In the very special case of the OCP, where t
particle-particle correlation coincides with the charge-cha
correlation, the falloff of the time-displaced classical corr
lation is even faster: it decays asC(t)/r 10, according to the
behavior of thet8 term in a small-time expansion@11#.

In the presence ofB0 , only the case of the OCP has bee
studied, to our knowledge. The charge-charge correlation
cays asD(t)/r 5. Indeed, the first-order term in the small-k
expansion of the Fourier transforme2SOCP(k,t)uB0

starts at

orderuku2 by a term given by formula~2.20! in Ref. @1#. This
exact result may be obtained from the microsco
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy as well as from linear response and macroscopic elec
dynamics. This term has the same structure as in the q
tum sum rule~16! with cos(v6t) in place of
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b\v6

2
cothS b\v6

2 D . ~158!

Thus the term of order uku2 in e2SOCP,B0
(k,t),

e2SOCP,B0

(2) (k,t) oscillates with time with well-defined fre

quencies which themselves oscillate with the angle betw
k and B0 as in Eq.~17!. If this exact result is expanded i
powers oft, the nonanalytic term ine2SOCP,B050

(2) (k,t) ap-

pears only in thet8 term. We recall that, in the caseB50,
the 1/r 10 tail of e2SOCP derived from a directt expansion of
the correlation also appears only from ordert8 @11#.
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APPENDIX A

In this appendix we investigate the structure of the 1r 6

tail of hnn before loop expansions whenB050. We intro-
duce the notationf n2[q,q8] (x,x8) for a function which is of
parity (21)q and (21)q8 under inversion ofX andX8, re-
spectively, and which is the sum of graphs wherex is a
non-Coulomb-root point whilex8 is any kind of root point.

According to Ref.@10# and Sec. VII of Paper I, the 1/r 6

tail Shnn
(6)[0,0](r ,x1 ,x2) of hnn which is involved in Eq.~36!

comes either from the term@W3#2/2 in the asymptotic behav
ior of one bondFR and has the structure

E dx18E dx28S E dxG 2
n2[0,0]~x;x1 ,x18! D

3
1

2
@W3~r ,x18 ,x28!#2S E dyG 2

2n[0,0]~y;x28 ,x2! D , ~A1!

or it comes from the product of the leading 1/r 3 asymptotic
behaviorsSC

(3) of two convolutions, each of which involve
at least one bondFR . According to the general analysis o
Appendix A in Paper I, the 1/r 3 tail before integration over
loop shapes is odd under inversion of each loop sha
SC

(3)(r ,x1 ,x2)5SC
(3)[1,1](r ,x1 ,x2). These two functionsSC

(3)

link either exactly three points andShnn
(6)[0,0](r ,x1 ,x2) is of

the form

E dx18E dx28E dx29S E dxG 2
n2[0,0]~x;x1 ,x18! D

3SC
~3![1,1]~r ,x18 ,x28!SC

~3![1,1]~r ,x18 ,x29!

3S E dyE dy8G 3
22n[1,1,0]~y,y8;x28 ,x29 ,x2! D ~A2!

or they link exactly four points, with the result
n

e,

E dx18E dx19E dx28E dx29

3S E dxE dx8G 3
n22[0,1,1]~x,x8;x1 ,x18 ,x19! D

3SC
~3![1,1]~r ,x18 ,x28!SC

~3![1,1]~r ,x19 ,x29!

3S E dyE dy8G 3
22n[1,1,0]~y,y8;x28 ,x29 ,x2! D . ~A3!

Equations~A1!–~A3! are the three allowed structures fo
Shnn

(6)[0,0](r ,xa ,xb).
For the sake of pedagogy, we give examples of diagra

for each kind of structures of 1/r 6 tails. For instance, some
contributions toShnn

(6)[0,0](r ,x1 ,x2) of the form ~A1! come
from the following diagrams inhnn. The contribution from
FR2W is @W3#2/2 and then G 2

n2[0,0](x;x1 ,x18)
5d(x)dx1 ,x

18
. The contribution toShnn

(6)[0,0](r ,x1 ,x2) from

the diagramP equal toFR* rFR is given by the 1/r 6 tail of

the diagramP̃ equal to@FR2W#* r@FR2W#. This tail is the
sum of two terms,

E dx28
1

2
@W3~r ,x1 ,x28!#2S E dyr~x28!@FR2W#~y,x28 ,x2! D

~A4!

and the symmetric term obtained by exchanging the role
root points 1 and 2. This tail corresponds to
G 2

n2[0,0](x,x1 ,x18) which is identical to the previous one
while G 2

2n(y,x28 ,x2)5r(x28)@FR2W#(y,x28 ,x2). Accord-
ing to Eq.~31!, the contribution to*dyG 2

2n from W reduces
to that from W3 . According to Eq. ~34!,
*dyG 2

2n[0,0](y;x28 ,x2)5r(x28)*dyFR(y;x28 ,x2).
A contribution to Shnn

(6)[0,0](r ,x1 ,x2) of the form ~A2!

arises from the diagramP that readsFR@FR* rFR#. It is equal
to those among the 1/r 6 tails of diagramsW@W* r(FR
2W)# and W@(FR2W)* rW# that are even inX1 and X2 .
The tail of the former diagram may be written as

E dx29W3~r ,x1 ,x2!W3~r ,x1 ,x29!

3S E dyr~x29!@FR2W3#~y,x29 ,x2! D , ~A5!

where we have used property~31!.
An Shnn

(6)[0,0](r ,x1 ,x2) tail of the form~A3!—together with
contributions of the form~A2!—originates from the diagram
@FR* rFR#@FR* rFR#. More precisely, the tail with structure

~A3! is given by the diagramP̃ equal to

@~FR2W!* rW#@W* r~FR2W!#.

It reads
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E dx18E dx28S E dxr~x18!@FR2W3#~x,x1 ,x18! D
3W3~r ,x18 ,x2!W3~r ,x1 ,x28!

3S E dyr~x28!@FR2W3#~y,x28 ,x2! D . ~A6!

Equation~A6! corresponds to

G 3
n22[0,1,1]~x,x8;x1 ,x18 ,x19!

5d~x8!dx1 ,x
19
r~x18!@FR2W3#~x,x1 ,x18!

while G 3
22n[1,1,0](y,y8;x28 ,x29 ,x2) has a similar expression

APPENDIX B

In this appendix we turn to the derivation of the loo
density expansions of the 1/r 6 tail of hnn. We use the struc-
tures of this tail with two, three, or four intermediate poin
given in Appendix A. Loop-density expansions are p
formed according to the principles of Sec. IV A.

As already sketched in Sec. IV A, diagrams inhnn that
contribute to the coefficient ofShnn

(6) at a given order inr loop

are readily determined as follows. DiagramsP̃ that appear in

functionsG2 andG3 are replaced by diagramsP̃T built with
bonds Fcc, Fcm, Fmc, @Fcc#2/2, W, and FRT2W5FR
2@Fcc#2/22W. The analysis in loop density performed fo
analogous bonds in Sec. IV A of Paper II is used again w
the following results.

*dxG 2
n2[0,0](x;x1 ,x18) starts at orderr loop

0 , with

G 2
n2[0,0]u loop

$0% ~x;x1 ,x18!5d~x!dx1 ,x
18

~B1!

whereas*dx*dx8G 3
n22[0,1,1](x,x8;x1 ,x18 ,x19) starts only at

orderr loop, with

G 3
n22[0,1,1]u loop

$1% ~x,x8;x1 ,x18 ,x19!

5d~x8!dx1 ,x
19
r~x18!FRT~x,x1 ,x18!. ~B2!

In the following, the notationGu loop
$n% is to be understood as th

contribution ofG of orderr loop
n after integration over position

variables. We notice, though this formula is not used in
present paper, that

G 3
n22[0,1,1]u loop

$3/2%~x,x8;x1 ,x18 ,x19!5
1

2
r~x18!r~x19!$•••%,

~B3!

with

$•••%5Fcm~1,18!Fcm~1,19!Fcc~18,19!

1Fcm~1,18!Fcc~1,19!Fcm~18,19!

1Fcc~1,18!Fcm~1,19!Fmc~18,19!

1Fcc~1,18!Fcc~1,19!FRT~18,19!. ~B4!
-

h

e

In Eq. ~B4! the contributions fromW andFRT2W have been
summed and 1/2 is the symmetry factor of diagrams.~The
first three diagrams are such that one and only onem is
associated with 18 as well as with 19.)

Moreover, contributions to*dxG 2
n2[0,0](x;x1 ,x18) at or-

ders r loop
1/2 and r loop arise from diagrams with the structur

G 2
nn[0,0]

* SD . Indeed, ther loop
1/2 term corresponds to

G 2
n2[0,0]u loop

$1/2%5
1

2
@Fcc#2r* SD. ~B5!

We notice that the contribution from diagramFcm(x,x1 ,x18)
to *dxG2(x,x1 ,x18) at any orderr loop

n , with n<1/2, vanishes
according to Eq.~30!. Thus the convolution of an algebrai
tail with Fcm increases the exponent of the falloff after int
gration over orientation ofx. The term of orderr in
*dxG 2

n2[0,0](x;x1 ,x18) is given by aG 2
nn[0,0]u loop

$1% * SD with

G 2
nn[0,0]u loop

$1% [FRT1
1

2
@Fcc#2* r

1

2
@Fcc#2

1
1

2
@Fcc#2* rFcc* r

1

2
@Fcc#2

1FccH Fcc* r
1

2
@Fcc#21

1

2
@Fcc#2* rFcc

1Fcc* r
1

2
@Fcc#2* rFccJ 1bridge5 . ~B6!

In this writing we have summedW and FRT2W while
Bridge5 denotes the value of a bridge diagram with fi
bondsFcc and two root points,

bridge5~r12r18 ,x1 ,x18!

[
1

2E dPr~x!E dP8r~x8!Fcc~L1 ,P!

3Fcc~L1 ,P8!Fcc~P,P8!Fcc~P,L18!Fcc~P8,L18!.

~B7!

Bridge5 is analogous to the bridge diagramI bridge6
with six

bondsFcc and one root point, which is introduced in Se
V D of Paper II for the calculation of the free energy fro
the diagrammatic representation of the ratior/ra

id!,MB . Dia-
grams at next order inr loop are too numerous to be present
here.

As a conclusion, the structures~A1!, ~A2!, and ~A3! of
the tailShnn

(6) with two, three, or four intermediate points sta
at ordersr loop

0 , r loop, andr loop
2 , respectively. Therefore the

1/r 6 tail of the particle-particle correlation starts at orderr2.
Indeed, in its contribution to the particle-particle correlatio
hnn is convoluted by dressings that start at orderr loop

0 , and
the root points ofh are multiplied by weightsr loop. Thus, up



I,

q

o

on

,
q.

-

t
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to orderr loop
5/2 , Aaaab

/r 6 is given by Eq.~44! whereShnn
(6)[0,0]

has the structure with two intermediate points~A1!. Then the
results of Sec. V B are derived from Eqs.~B1! and ~B5!.

APPENDIX C

In this appendix we explicitly check identities~81! and
~82! at the first order in density. TheDa /r 5 tail of the
particle-charge correlation in the presence ofB0 reads

Da

r 5
5E dxar~xa!deaa

,a

3E dxbr~xb!pbeab
Spc

~5![0,0]~r ,xa ,xb!, ~C1!

where, according to Sec. VIII,B of Paper
Spc

(5)[0,0](r ,xa ,xb) is the 1/r 5 tail of SD* * hnn* rFmc which is
even under inversion of each root point. According to E
~28!, the small-k expansion ofFcm starts at orderuku so that
Spc

(2)[0,0](k,xa ,xb) may be decomposed as the sum of tw
contributions,

E dx1E dx2r~x2!Fcm~1!~k,xa ,x1!

3Shnn
~0![1,1]Fcm~1!3~k,x2 ,xb! ~C2a!

1E dx1E dx2r~x2!SD
~0!~k,x1 ;xa!Shnn

~1![0,1]

3Fcm~1!~k,x2 ,xb!. ~C2b!

We have not included the third term

E dx1E dx2r~x2!SD
~0!~k,x1 ;xa!

3Shnn
~0![0,0]Fmc~2!~k,x2 ,xb!50. ~C3!

It vanishes for the same reason as Eq.~84!.
SincerFcm(1) andSD

(0) are exactly of orderr loop
0 , Spc

(2)[0,0]

starts at orderr loop
0 where it involves Eqs.~88! and ~89!. At

the first orderr0 in particle density the same compensati
mechanism as in the case ofSpp

(5)[0,0] operates forSpc
(5)[0,0] .

Indeed, similarly to Eq.~99!, the effective contribution from
SD* * hnn* rFmc to the tail Spc

(5) at the lowest order inr loop

may be reorganized in Fourier space as

FFcm~1!rw3
[1,1]1

1

2
Fcc~0!rw4

[2,1]GFmc~1! ~C4a!

1
1

2
w4

[2,1]rFmc~1!. ~C4b!

According to Eq.~94!, only Eq. ~C4b! contributes to the
inverse Fourier transform
.

Spc
~5![0,0]~r ,ja ,jb!u$0%

5F 21F1

2(a1

E Da1 ,B0
~j1!w4

[2,1]~k,ja ,j1 ;aa ,a1!

3ra1
Fmc~1!$21%~k,j1 ;a1 ,ab!G~r !. ~C5!

Subsequently, the 1/r 5 tail of the particle-charge correlation
given by Eqs.~C1! and ~C5!, has the same structure as E
~101! with Fag

pp(k,s1 ,s2) replaced by(gegFag
pc (k,s1 ,s2),

whereFag
pc (k,s1 ,s2) has an expression similar to Eq.~102!

with the term in braces equal to

1

2E0

1

ds28E Da,B0
~j1!E Dg,B0

~j2!@k•j1~s1!#2@k•j2~s2!#

3@k•j2~s28!#
4p

k2
. ~C6!

The nonanalytic term in Eq.~C6! has the same structure ink
as Eq.~105! with the coefficientdCa(s1 ,s1)dCg(s2 ,s2) re-
placed by 2dCa(s1 ,s1)*0

1ds28dCg(s2 ,s28). The factor 2 is
compensated by the factor 1/2 arising from Eq.~97!, and the
Da /r 5 tail of (gegrag

(2)T(r ) is equal to(geg times the ex-
pression~110!, namely, we get Eq.~81!.

The origin of theD/r 5 tail of the charge-charge correla
tion is reduced to

D

r 5 5E dxar~xa!paeaa
E dxbr~xb!

3pbeab
Scc

~5![0,0]~r ,xa ,xb!, ~C7!

whereScc
(5)[0,0](r ,xa ,xb) is the 1/r 5 tail of Fcmr* hnn* rFmc.

More precisely,

Scc
~2![0,0]~k,xa ,xb!5Fcm~1!~k,xa ,x1!Shnn

~0![1,1]
~k,x1 ,x2!

3Fmc~1!~k,x2 ,xb!. ~C8!

Since rFcm(1) is exactly of orderr loop
0 , by inserting Eqs.

~88! and ~28! into Eq. ~C8!, we obtain that at the lowes
order in particle density

F FD $2%

r 5 G ~k!5(
a1

ra1
ea1(a2

ra2
ea2

E Da1 ,B0
~j1!

3E Da2 ,B0
~j2!E

0

1

dsE
0

1

ds8@k•la1
j1~s!#

3@k•la1
j2~s8!#W3~k,j1 ,j2 ;a1 ,a2!. ~C9!

Equation ~C9! has the same structure as Eq.~101! with
Fag

pp(k,s1 ,s2) replaced by (a,geaegFag
cc (k,s1 ,s2) where

Fag
cc (k,s1 ,s2) is given by an expression similar to Eq.~102!

with the term in braces replaced by
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0

1

ds18E
0

1

ds28E Da,B0
~j1!E Dg,B0

~j2!@k•j1~s1!#

3@k•j1~s18!#@k•j2~s2!#@k•j2~s28!#
4p

k2
. ~C10!
s

The nonanalytic term in Eq.~C10! has the structure~105!
with dCa(s1 ,s1)dCg(s2 ,s2) replaced by
4*0

1ds18dCa(s1 ,s18)*0
1ds28dCg(s2 ,s28). According to Eq.

~97!, the factor 4 is compensated by a factor 1/4 and
obtain Eq.~82!.
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