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Quantum plasmas with or without a uniform magnetic field. Il1.
Exact low-density algebraic tails of correlations
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For a multicomponent plasma of point charges with Coulomb interactions, the exact analytical low-density
expressions for leading algebraic tails of various quantum static correlations at large distances are derived at
the first two orders in density in the absence as well as in the presence of a uniform magneBg fi€le
calculation is nonperturbative in the Planck consfaand in the coupling with the magnetic field. It settles the
existence of algebraic quantum screening for position correlations with or without charge summations. In the
case of a one-component plasti@CP our calculation does coincide with another expression which we derive
from an exact sum rule specific to the OCP. A simple physical picture emerges from our results. At low
density, each algebraic tail arises merely from one effective quantum interaction: a squared dipolar energy
whenBy=0 and a quadrupolar interaction in the anisotropic dg& 0. Only Maxwell-Boltzmann statistics
and free quantum motion are involved at the first two orders in density. Thus for a given value of the magnetic
coupling constant the coefficient is exactly proportionakfy and whenB,=0, it coincides with the low-
density limit of the semiclassical calculation for a Coulomb potential regularized at the origin. Quantum
dynamics and quantum statistics in the presence of Coulomb interactions show up only at the third order in
density where a singular dependencé iappears. In the cask =0, the classical the Debye screening proves
to be sufficient to enforce a cascade in the exponents of the leading algebraic tails when charges are summed
over. WhenB,# 0 a cancellation between the Debye screening effect and its semiclassical diffraction correc-
tion may be interpreted as a consequence of the intrinsic quantum nature of statistical magnetic properties.
Subsequently, the charge density induced by an external cléiarge nonlinear indq at the first order in
density whenB,# 0. Finally, the crossover distance between classical exponential and quantum algebraic
falloffs is estimated: it is a few Debye lengths, because quantum effects are still quantitatively small in the
regime where exact analytical results are availaf$4.063-651%98)02810-4

PACS numbdps): 05.30—d, 05.70.Ce, 71.45.Gm

I. INTRODUCTION sum rule for the model of the one-component plag@&P
implies the existence of an algebraic tail for the quantum
In the present paper we exhibit the exact analytical low-static correlation in the presenceBy, as already noticed in
density limits of leading algebraic tails for various correla- the analogous case of the classical time-displaced correlation
tions at large distances in a quantum plasma of point for the same systefi]. Our result for the OCP seen as some
charges with Coulomb interaction at finite temperaturelimit of a two-component plasma does coincide with the low-
1/8: we address the particle-particle, particle-charge, andensity coefficient derived from the exact sum rule. The vari-
charge-charge correlations;;fy”(r), Eyeypffy)T(r), and ous qualitative and quantitative results have been summa-
S 0 1€a8,p2)(r), respectively.(In fact correlation means fized elsewhere in the casBg=0 [2] andB,+0 [3].
two-body distribution function.We also produce the tail of =~ The paper is organized as follows. The main results are
the induced charge densig/yeyp‘;‘d(r;q) in the presence of displayed in Sec. Il. In Sec. Il A we give the expressions and

an external point chargg, which may be either finite or the formal structures of low-density tails pf2)(r) in order
infinitesimal. [In the latter case we use the notation to exhibit physical mechanisms at stake. At low density, al-

gyeypi;d,L(r;gq)' where the extra superscript (not intro- gebraic tails arise merely from squared dipolar interactions
duced in previous papersefers to the linear response WhenBy=0 or from quadrupolar forces in the anisotropic
theory] Theseexact analyticaresults settle the existence of caseBo#0. Their coefficients at ordep® and p> are ex-
algebraic screening in quantum plasmas whose Hamiltonia@ctly proportional to7* (for a given value of the orbital

is that given in Paper |. Indeed, the argument of Paper magnetic coupling A singular dependence shows up only
about the algebraic decay of quantum correlations in Coufrom orderp® when quantum statistics and quantum dynam-
lomb systems at any finite density is only perturbative in theics with Coulomb interactions begin playing a role. Simi-
sense that it is derived from expansions with respect to atarly, spin and position variables are coupled only by the
auxiliary variable, namely, the loop density. The low-densitylatter ones so that the spin does not appear at the first two
regime corresponds to physical situations of low degeneracgrders in densities. In Sec. |l B, we point out how the exact
and weak Coulomb coupling, and the present low-densityow-density tail for the OCP may be derived from an exact
limits are derived by using the same techniques as thossum rule established in another framework. In Sec. Il C the
introduced in Paper Il. Moreover, we point out that an exacorder of magnitude of the crossover distance at which the
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algebraic quantum tail begins dominating the exponentiaparticle-particle correlation at the first two ordep$ and
classical tail is shown to be a few Debye lengths: the effech®2 (As in Paper Il,p is a generic notation for particle
proves to be quantitatively small in the low-density regime.densities, while a term which is exactly of ordet is de-
In Sec. Il we recall relations between distribution functionsnoted byf{™.) A particle of specieg is characterized by its
for quantum particles and for loogSec. Ill A). The invari-  massm,,, its chargee,, and its spinS,. In fact, the spin
ance of the measure for loop shapes under inversion allowgill not be involved in the expressions at order andp5’2.

one to simplify the discussion of the smallbehavior of WhenB,=0, at the first order in density,

correlations in Fourier spadsee Sec. Il B. In Sec. IV we

sketch the sche_me for Iow-density e>_(pansi0ns. F_irst, we per- - Bn4 e, Kg/m e, Kg/m

form loop-density expansions by using the scaling analysi® ., (r)|Bo=O T ag Pl T T M 2 |
r—ow a Kp b4 Kp

of diagrams introduced in Paper (Bec. IV A and then we
replace loop densities by their expressions in terms of par- D
ticle densities(Sec. IV B. Section V is devoted to the case whereB=(ksT) ! is the inverse temperaturep, is equal to

By=0. As at any finite density, there occurs a cascade O{he inverse Debye screening lengtia =\/477,82—ez
power laws when charges are summed over: a simple mecha- |, > —AmBS {p &/m ). The IeadE;ng algebrgi[éadg,cay

nism involving only classical Debye screening is shown toalnd Keefm T ) 5o

be efficient enough at the first two orders in dengBec. Aay/T” Of pay (1)ls,=0 at ordersp® and p™* turns out to

V A). Explicit results at these orders are produ¢@dcs. VB  arise only from the squared fluctuations of some dipolar in-
and V O and diagrams that contribute at next order in den-teraction combined with classical Debye screening effects.
sity are listed in order to discuss other quantum effects thatlore precisely,Afl"y}/rG, with n=2 or 5/2, may be inter-
appear only from third ordefSec. VD. In particular, we preted as the tail of the convolution

discuss the dependence of coefficients upon the Planck con-

stantf. The caseBy+#0 is investigated in Sec. VI. Argu- | _ a\yeff)[{n cl

ments of invariance under inversion enforce constraints on a%z Sg'““l*[ 'BV“l“z'{ }]*SD*W’ @)

the diagrams to be consideré8ec. VIA). A cancellation

between classical Debye screening and its semiclassical diﬁvherevif;(fz’(r)ﬁ”} is a purely algebraic effective potential

fraction correction, which occurs only at the first order in proportional to 17°. SB' +,(r), which decays exponentially

der;sity, is analyzedSec. VIB). The explicit values of the ¢qt is the Debye part of the classical structure factor. The
1/r* tails and their limits in weak or strong magnetic field are g ,cture factor is defined as

given(Sec. VI Q. In Sec. VIl the case of the OCP is handled

as a limiting case of a two-component plasma in the absence Say(N=pE (1) + 84,4 d(r) )
(Sec. VII A) as well as in the presené8ec. VIIB) of Bgy. In 7 7 g

the conclusionSec. VIII), after discussion of some qualita- and its classicallinearized Debye approximatio[ScDI’ay cor-
tive results(Sec. VIIIA), we consider other approaches to responds to

get a deeper insight into physical mechanisms at stake. The

compatibility of algebraic screening with exact sum rules 2)Tel, oy _
which characterize perfect screening is discussed in the low- PD,ay (1) =Paby
density regimgSec. VIII B). WhenBy=0, low-density ex-

pansions of exact quantum tails coincide with low-densityln terms of dimensionless Brownian bridgés which de-
expansions of semiclassical expressions, because the exacribe quantum position fluctuatiofsee Sec. 11l B of Paper
result is exactly proportional t6* at the first two orders in 1), foifz)(r)ﬁ”} is the average of some squared dipolar inter-

density(Sec. VI C). WhenBy#0 (Sec. VIIID), the intrin-  5-tion over all possible shapes, £ with a normalized
I

sic quantum nature of the algebraic tails which occur only mGaussian measui@(£) and a typical extent equal to the de

the presence of the magnetic field is discussed by compar ™" B )
son with the simple model recalled in Paper I. The nonlin-l?’roglle thermal wavelength ,= vBA~/m,. At zero density

earity of the induced charge at the first order in density is

e— Kpl

_:BeaeyT Epapyl:%c,ay- (4)

. . o 1
explained. FinallySec. VIII E), we recall that algebraic tails — BVEME) ()| 10} = —j D(gl)f D(&)
with the same exponents as in the quantum case also appear 1z 2
in classical time-displaced correlations. In the latter case the X[Wa(r &1, &y, a0)]%  (5)

polarization cloud cannot follow instantaneously the motion

of the Charge, because of inertia effects that are involved aﬁherews is a pure|y quantum dipo|e_dipo|e potentiaL
soon as time-displaced averages are considered; then the dy-

namical classical fluctuations of the instantaneous dipole as- 1 1

sociated with a charge and its screening cloud play a role Ws(f,§1,§z;a1,az)fﬁfo dsljo ds;[8(s;—s2)—1]
similar to that of the static quantum fluctuations.

X[\ g, &1(81)- V][N 4, 82(52) V]

ealeaz
r )

II. MAIN RESULTS

(6)

A. Formal structures of low-density tails X

In the present section we resume the description that
emerges from our final expressions for the low-densityandWs(r,&;,&;;aq,a,) is the 1f3 tail of
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W=— ,Bealeazjoldslfoldsz[ 8(s;—s,)—1] Ws(r, 81,65 a1, a5)

11 1
Xvc(r+ N, 82(52) = Ny, £1(51)), (7) __Bzfodsifodsz[é(sl_SZ)_l]

ea ea
where v(r)=1/r. The mean valug/D(&;)/D(&)Ws(r, X[\, &(S7)- V][N, §2(Sz)~V]2<#). (12)
&.,&;aq,,a,) vanishes by arguments of invariance under ! 2 r

§——4&. All Ur" termsW,, arising from the large-Taylor 5 IS not short ranged in spite of the harmonicity of the

gxpansion ofW and which are not panceled by inversion ~qdi.omb potential, because the measDrg (&) is aniso-
invariance of the measurB (&) are in fact short ranged, o . 0 .
tropic in the presence d8,. By using the covariance of a

becau_se, after the rotational invariance [d(¢) has been rownian motion driven by a uniform magnetic fieldgiven
taken into account, the latter terms are reduced to powers ?n Sec. IlIC of Paper I, we get Eq.(8). D'2/r5 contains
the Laplacian of ¥/ and A(1/r)=—4x8(r). The explicit b per J, we get £q.(9). Dy,
eff(6)/ o\ |{N} x i _ . . only one direct quadrupolar contribution without any Debye
values of V"> (r)|"™ with n=0,1/2 are given in Sec. V C. . ; 2
A screening contrary to what happens in E() for Al'] and

We notice that in the case of a two-component plasmahere is no dipole-dipole or dipole-quadrupole quantum in-
Asylpapy is independent from species or y in the low-  teraction screened by monopole-dipole Debye interaction ei-
density limit and the force corresponding Acﬁ,zy}vLA{asf} is  ther. Indeed, there occurs a cancellation mechanism between
attractive. classical exponential Debye screening and semiclassical dif-

WhenB# 0, rotational invariance is broken in one spacefraction corrections to it, so that the medium has no net con-
direction and nonsquared multipole-multipole interactionstribution to Eq. (10). At next order, the same cancellation
partially survive after statistical average. At the first order inmechanism is involved but it does not suppress all screening

density, contributions.
The cancellation of Debye screening contributions may be
e.e P,(cos) related to the intrinsically quantum dynamical nature of sta-
)T | ~ 3p4 27 A(u Ue.) - L .
Pay (T) By PaPyB m.m Ca Ucy PR tistical effects due to the magnetic field. It does not appear in
r—oo a'lly

®) the case of the 1f subleading tail in the presence Bf,.
Indeed, according to Sec. VIIIA of Paper |, ar8/decay

where P4(Xx) is a Legendre polynomial and is the angle arlses from the same dla%;?rp.matmﬁstru?tur? whem)e_rs
betweenB, and r, as already noticed in Paper I, while SWitched on or not, andh\;Z(r;Bo)/r® (with r=r/|r|) is

P4(X) =[ 35c0s4+20cos@+9]/64. In Eq.(8) analogous to the tail of the convolutid®) with the mea-
sure DBO(§) in place of D(&) in Eq. (5). The coefficient

2 2

3 1 Cy Ug, A{azy}(F;Bo) is anisotropic, because the effective potential
A(Ucy,Ucy) =51 — ——cothuc,———cothuc eff(6)[{0} ; :
721 Wi, —ud | ud ud Y Vala2| is now calculated with the measuig; (£).
a Y a Y . . . .

The coefficients of all considered tails at orders lower
1 1 1 1 than p® are entirely determined by quantum dynamics of
+ 45 32 302yt independent particleén the absence or in the presence of

Ca Cy “Ca By), Maxwell-Botzmann(MB) statistics, and classical De-

1 1 bye screening. However, from ordg? on, mechanisms are

- —] , 9 more intricate and contributions from quantum dynamics and
quantum statistics for interacting charges appear in the struc-

tures of algebraic tails.

Whereuca is the dimensionless COUpling constant for orbital When Charges are summed over, internal Screening is in-

magnetic interactionuc,=pBug.Bo. The interpretation is yolved in the relation between exponents of correlation de-

the following. The Ieadihg?J{f;/r5 tail of ngQT(r)|BO atthe cays at any finite densityas already discussed in Fourier

first orderp? reads space in Paper)l At the first two orders in density, when
By=0, classical Debye screening by itself is sufficient

D2 to lead to the cascade of power laws,,/r® B,/r®,

—5 =Papy L= BVRT D], (100 and C/r*® for p)T(r)[g—0, Z.8,p%) (r)|g,—0, and
% 0.,8a8,p ) (1)]g, =0, respectively. Indeed, at the first two

orders in densityB,,/r® and C/r'° may also be interpreted
as the tails of the convolutiof2) with corresponding charge
summations with the results

whereVS"® is a purely quantum quadrupole-quadrupole in-
teraction

—BVaa (N[

@@

2)T
EY e,p!2T(r)

By=0
:J DBO(fl)J D, (£2)Ws(r, &1, & a1, a2), 11 st

11 Keim| Keim €4
~ __B3ﬁ4p e —| —— —
18327 el m,) (13

with r
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7 o in agreement with the af° leading algebraic decay of the
> e.e,p (1) ~ 516 5 B%h* egm (14)  charge-charge correlatiog?S oc((r). WhenBy+0, the ex-
ay By=0 —" 16w K act|k|? term in the smalk expansion o5 ocdk) oscillates

in its dependence upon the anglg betweenB, andk. A
part of this oscillating term is nonanalytic in the components

When By#0, all correlations(with or without summation Lo o )
0 ( of k and it gives the coefficient of th®gcp/r® tail of

over chargesdecay with the same 1Y inverse power law. A
At first ordersp? and p®? this may be accounted for by the Soci(r) at any density implicitly.

fact that internal screening mechanisms, involving both th? é\/lore prec!sely, according to E@5.63 of Ref. [4], the
classical monopole-monopole Debye potential and its semik|~ term is given by

classical “diffraction” correction(more precisely a dipole- 5 K

monopole Debye interactigmpartially cancel one another at amB &"SocH )|Bo

first orders in density. ™4 Im k|2

Screening of an external charge is also investigated. At =0 e
low density, whenB,=0, classical Debye screening of an 1 Bho. Bliw.
external charge enforces a cascade in the density orders at =7 (0% —wd) 2 COt"( 2 )
which the coefficientsA,,, B,, and C start. The leading A
B*/r? tail of the induced charge density reads Bho Bho
—(wz_—wg) 5 _C0t|'< 5 _” (16)
ind,L, .. 11 . 4Kg/m
2 epyttrio)  ~ o pRT 8. (19)
Y By=0' =" Kb The term in the right-hand side of E¢L6) corresponds to

the double limit Ilim_.limg_., of [.dr'fdruc(r
It starts at ordep®; henceforth the 17 tail of the induced —'')€°Soce(r’) wherer’ is integrated over a cylindef
charge density does not vanish in the strict zero-densityvith radiusR and length 2 and whose axis is parallel with
limit. The reason is that such a tail is valid for distancesBo- The [k|* term in e’Socdg, (k) is not analytic in the
which are far larger than the Debye screening length so thalomponents ok, because frequencies, andw_ oscillate
the existence of the medium is always taken into accouniith the angleé,,
implicitly. WhenB,#0, the tailD,,, /r® of p{2)'(r)[g, at the
lowest orderp? (but not at orderp®?) results only from 1
nonlinear effects in each charge. Indeed, at ordep?, it wiz_{w2+w§t[(w2+w§)2_4(w w09, )2 1Y,
does not involve any net contribution from Debye screening 20r P P
(which is linear ine,) while the bare Coulomb interaction is (17

proportional toe, and the quadrupolar moment associated

with the quantum motion of each chargg in Eq. (12) is  \here w.=(e/mc)B, is the cyclotronic frequency ana,
quadratic in smale, when B, is switched on[More pre- = Jame2p/m is the plasmon frequency. WheBy+0 such
cisely it varies ag}/m;; this can be checked from the ex- an oscillatory behavior in the angte betweerB, andk also
plicit formula (8).] As a consequence, the tail of the induced gppears in density waves with large wavelength in the ran-
charge densit¥ ,e,p’(r;q)[g,, which can be derived from dom phase approximatidis]. We notice that ifB,=0, then

pffy)T(r)|Bo (see Sec. VIIIC of Papen,lis nonlinear ingat o} =w?> and w” =0, and Eq.(16) reduces to the sum rule

the corresponding order: it becomes cubic with respect to derived in[6,7],
the ratiog/m, for the external charge when the latter goes to
zero—and henceforth vanishes for a fixed infinitesimal ex- 2
ternal point charge which cannot be sensitive to the magnetic 4B | e SOCP(|k|)|Bo:0 _ ph Wp i Bhiw,
field (since its mass must be seen as infinikedeed, accord- Wﬂ‘k"To E ) co 2

ing to the loop formalism, the tail of the induced charge (18)
7Hg,(r;59) given by the linear response

density = ,e,p;,
theory vanishes at ordgr and shows up only at ordgr’? o
(see Sec. VIB} The dependence.o.n oﬁsof'the exact term(16) is |nt'r|- .
cate. However, explicit analytical results may be obtained in
the low-density regime at-= B% w /2 fixed. At orderp, the
B. The OCP as a test bench |k|2 term inS oK) involves a term proportional tk? plus

An interesting test bench for our calculations is the modeR contribution withk?(coss)?=[k]2, which is anisotropic
of the quantum OCP. The OCP is special in the sense thdut analytic. At orderp? there appears an extk&(coss,)*
there exists an exact sum rji# that determines the value of =[k]2/k? term, which is nonanalytic. We have checked that
the term of ordetk|? in the Fourier transform of the struc- the low-density coefficierﬂ)gépat orderp? which is derived
ture factorsocp(r):pa(r)+p(02£,(r). (This sum rule arises from our low-density results for a two-component plasma
from the fact that the center of mass decouples from relativeloes coincide with the inverse Fourier transform of the
coordinates and is only submitted to the harmonic force ofionanalytic part in the low-density limit of the exa|?

the background WhenB,=0, this term is analytic, which is term in SgcHK).
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N_/a~0.01,I'~0.4, andr, ~43¢y . In laboratory experi-

The crossover distancg between the Debye exponential MeNts, magnetic fields are not much stronger than a few

decay and the algebraic tail may be calculated in some phys
cal situations, where conditions for low-density expansion

feslas. ForBy~1 T, BugBo~2.2<1073 T and we are in

Londitions of weak coupling with the external magnetic field.

are met. In regimes of weak Coulomb coupling and low de-Then we find that, ~66¢p . We notice that if it were pos-
generacy, the numerical value of the algebraic tail of thes!ble to gener?te-magnetlc fields so intense that the coeffi-
particle-particle correlation becomes more important tharfi€nt of the 1r” tail would no longer depend 0B, at lead-
that of the Debye exponential decay only at distances of"d order, therr, ~36¢p .

about ten Debye lengths, in the absef@kas well as in the
presencg3] of By.

It is not surprising that, is about tenéy . Indeed, our
analytical expressions do correspond to fully quantum dy-

The latter estimations are obtained by considering tails off@mics but quantum effects are not quantitatively important
particle-particle correlations for a symmetric two-componentt low density. However, there may exist some system with

plasma in order to get very simple analytical expressions istronger quantum features wherg might be of the same
terms of dimensionless parameters of the problem. For grder asép.

symmetric two-component plasma in whieh = —e_=e,
the local neutrality relation implies that, =p_=p. The

Debye expression, which is exact for a classical plasma in

the limit of weak Coulomb coupling8], reads

e—X
Plyp (1) ~ —sgre,)sgr(e,)p?3I¥2——,

r—oo

(19

where sgn¢,) is the sign of the charge, , x=r/¢p, andép
is the Debye IengtthEK,;l. The mean interparticle dis-
tancea is calculated from the relation (43)a3(2p)=1, so
that the coupling constant i§'=ge?/a=(1/3)(a/ép)?.
When By=0, the first-order term(1) in the 1/° tail of

pgzy)T(r)|Bo:o is reduced to
9 AV mo]?1
)T ~ 2 T5 | =
pll’)/ (r)|80:0r*}3¢p 320F a 1+ m+:| XG' (20)

Ill. BASIC FORMULAS AT ANY DENSITY

A. Particle versus loop correlations

The part of the correlation that arises from configurations
where particles at positiorsandr are not exchanged under
a cyclic permutation of quantum statistics may be expressed
as[9]

2)T
p(aa)ab| nonexchk )

= papbf D(Xa)f D(Xp)p(xa)p(xp)N(r,Xa:Xxb),
PaPp
(22)

with notations of Paper I. In the part of the paper devoted to
the derivation of the coefficients of algebraic tails, we use the
notationa, and «;, in order to keep track of loops that are

root points in the diagrammatic representation of the Ursell

where\ _ is the de Broglie thermal wavelength of negative function h. We recall that a “point” in a diagram denotes
charges\ _=\/BA%/m_. For instance, the core of the Sun the loop variablesR,x). The analogous nonexchange part
may be seen as a hydrogen plasma almost fully ionized bygf the induced charge density redd®]

pressure and temperature, with a mass dengity
~160 g/cni at temperaturel ~1.5x 10" K. Thus a~0.1
A, the system is rather weakly degenerated/a~0.7, and

weakly coupled]’ ~0.1. The contribution from the algebraic

tall Aay/r6 becomes as large as the classical Debyekdl
approximation at a crossover distancg~31¢y. In the
presence oB,, we use the simple forr(8) valid in the limit
whereBy=|B,| becomes infinite,

p2T(r)]gs, ~ —san(e,)sgn(e,)p?
r—oo
343 AL\ 2N\ 2P a(cosd
xilﬂ?/Z_“ vl #_ (22)
10 a a X

In the opposite regime of very wedl, the limiting law is

just equal to Eg.(21) multiplied by (1/105) times
(BreaBo)?(Bus,Bo)?, Where ug, is the Bohr magneton,
Mp,=€,l2m,C.

; &0y’ 4mp
h a
5q(k)n0”excz_ k2 Janp(Xa)eaapaGh(kvXa)v
(23

whereG; is defined as

_ Po ik Xy (") )
Gi(k,x)= | dxbp(xb)€qs, . dre” " IV (K, X xb)-
(24)

The structures of leading algebraic tails of various corre-
lations have been given in terms of diagrams with weight
p(L) before any expansion in Paper I. They involve dia-
gramsIl with bondsF°¢¢, F°™, Fr—W, andW. For all kinds
of correlations, they are expressed in terms of one and the
same functiorh"", with proper “dressings” which describe

An example where we can compare results with or With-screening_ of mo_nopole-_monopole and mQHOpole-mlJ_ltipole
out magnetic field is that of an intrinsic semiconductor wherequantum interactionh"" is the sum of all diagrams ih in

the charge-carrier gdmade of electrons and ho)es indeed

which root points are not Coulomb root points, i.e., in which

at finite temperature and weakly degenerated as well agach root pointZ, is neither the end point of a single bond
weakly coupled. For instance, in germanium, holes have th&°*(£, ,£;) or F°™(L,,L;). For instance, the 4 tail of

same mass as electrors;- 1530 A andT~300 K, so that

)T
Pa ey, COMES from
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pRTIL (25)  Thus the ternF™P)(k, y,x") of order|k|P in F*™(Kk,x,x")
is such that
where X, describes a loop surrounded by a polarization
cloud in the mean-field “Debye” approximatiofsee Sec.
VIII A of Paper I). We recall that * denotes a convolution in o o
position space and an integration over the internal degrees ¥fhere6(p) =0 if pis even and¥(p) =1 if p is odd. In fact,

Femp) = pem(p)[0.6(p)] (29

freedom of the intermediate loop. F°™is independent oK,. Moreover, according to Sec. VA
of Paper I,
B. Structure of Fourier transforms of correlation tails
Since diagrams of interest are convolutions, we work in f drFe™(r, x1:xa) =0. (30)

Fourier space. Indeed, the large-distance behavior of a con-
volution f*g is merely given by the nonanalytical singulari-  Other properties arising from parity arguments are useful
ties in the product of smak- expansions of Fourier trans- to simplify formulas. First,
forms of f andg (see Sec. VIB of Papej.|

According to the general study performed in Paper I, the , ,
orders in|k| of dressings and di"" are determined by two f dr[Fr=—WI(r, x,x )=f dr[Fr=Ws](r,x.x"),
kinds of symmetry arguments: on one hand, parity arguments (3D
which occur when loop shapes are integrated over and, on
the other hand, arguments of rotational invariance arounsvhereW; is the 1f3 part in the purely algebraic term
any axis(or only around some given directipwhich make
(or do not makgsome terms analytical in the components of , P P,
k. In the very simple example which we mentioned in Eq. WX X )=—,8eaea,f0 deo dr'{6((7—P(7)]
(25) whenB,=0, the terms of ordefk|°, |k|, and|k|? in the
singular partSynn(k, x1,x2) of the Fourier transform ofi""
are canceled by symmetry arguments at any finite density —[7"=P(r")]D—-1} — :
and singularities oh""(k) appear only from ordelk|3. We [r+X7(7") = X(7)]
notice that, if the first term in the Fourier transform of the (32
dressing is of ordetk|P with p>0, then the order of the
singular term to be looked for i6,nn is lowered for a given Only W3 contributes tof drW(r) in Eq. (31), because every
inverse power law in the decay of the considered correlationderivative of greater order than 2 that is not canceled by

Moreover, the part 0S,nn(k,X;,X,) which is relevant parity arguments involves an even power of the Laplacian of
has a given parity itX; , because each term of a given order 1/r, the integral of which vanishe$This property has al-
in |k| in the smallk expansion of the dressing has a givenready been used in Sec. IVB of Pape) Bince A(1/r)=
parity in the shapes of its arguments. As in Paper |, we use- 47 5(r),
the notationf!®9'1(y,x') whereq=0 (q’'=0) if f is even
xnder inversion oX (X') andg=1 (q'=1), ifitis odd. f drws(r, x,x')

ccording to Sec. VIII A of Paper |

4 p '
4mBp(x1)€q,P1l K2 =— —Trﬁeaea,f drfp dr'{8(7—P(7)]
Zp(Kix1iXa) = Oy, x, eaapaT T2 3 o Jo
—[7"=P(r") D)= 1}X(7)- X" (7). (33
+Ognal [K|Y), (26)
o Moreover,
whereO,.(|k|*) denotes a term of ordék|* which is ana-
lytical in the components df, and at any order ifk| W= 0 (34)
Sp=3f7. (27)  and subsequently, according to Eq1),
With the convention that the root point is always a Coulomb (0.0] ) [0.0] ,
point in dressings by and F°™, so thatFe™(k, x1;xa) f dr[Fr—W]™2(r, x, x )If drFER™(r x.x")-
Ech(k!XaIXl)i (35)
p(xD)F°"(K,x1;xa) In the present simple examplé25), only the part
SOk, x1,x2) of Sk, x1,x2) is to be considered be-
B 4AmBe, P1p(x1) pld_T_k X causep(k=0,x;x') is even under inversion of both its
~€a,Pa 2 0 pl' Xa(7) arguments. As a conclusion, the part frénthat does con-
tribute to the W° tail of p] (r)[g —o arises only from
+Jp1d_7 1(k,xl(7))2 +O(|k[3). (28) Sp*h"* 3, and has a very simple structure in Fourier
0o P12 space,
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B. Particle-density expansions

S("|3)|Bozo(k-Xa1Xb):J Xmf dx2

Expansions in terms of quantum particle densities are per-
XSOk xy x2S 2109 ) formed by using the expansions 0p(£), «, and of bonds.
p (K X13Xa)Synn 1X11X2 We recall that integration over loop shapes cannot diminish
the order in density, but, on the contrary, it can only increase
X I (K, x2ix0)- (30 Y Y Y
The fundamental properties for theexpansion of the
IV. SCHEME FOR LOW-DENSITY EXPANSIONS loop density have been derived in Sec. IlID of Paper II:

. . . X,) starts at ordepP
Once structures of correlation tails have been analyzed |ﬁ“*p( p) P

Fourier space, the low-density expansions may be achieved D(&)pa (&) =p.Dp (&+0(p?) (40)
in two steps: a first expansion in terms of the loop density, ’ 0
and a second one in terms of the particle density. As in Pape{q .= xp+O(p%?). Equation(40) is valid in the presence

I, the order in densityof loops or of particlesis denoted by 55 well in the absence of a magnetic fiélcause it comes
braces in order to avoid confusion with the ordekiwhich  f.54, 5 diagrammatic structure

is referred to in parentheses. We use the notapin] p"] As shown below, only loops witp=1 will have to be
for the order in loofparticle] density. taken into account in the study of the coefficients of leading
tails at the first two orders in density. For instance, the coef-
A. Loop-density expansions ficientA, ,, of the 1k5 tail of the particle-particle correla-
1. Dressings at low loop density tion P@IJBO:O(V) will be easily calculated up to order”,

Dressings are entirely scaled ay= 478/ dxp2ep(x) because, according to Eg®2), (36), and (37), it involves

. ) . . (6)[0,0]{0} (6)[0,0{1/2 ;
according to the definitions df°¢ and F°™ given in Sec.  ONY Sion : (r1512:§2) and S 2(r,£1,&,) which are

IVA of Paper I. Simple results are the following. of orderp® andp' respectively.
p(x')F(k=0,x,x') is of Orderpﬁ)op exactly, and, accord- The tail of the particle-particle correlation will not be cal-
ing to Eq.(26), culated up to ordep®, because sources of mistakes are too
numerous. Indeech(£) should be expanded up to orde,
ED(kZO,X,X'):o(pI%Op), (37)  dressings in Fourier space should be taken into account fur-

ther than up to the first simple orders gnandk, and dia-
Moreover, the term of ordek|9 is proportional toP,;,gp, so grams with more numerous internal points would be in-
that the order irp decreases when the order|kj increases. volved. For the same reasons, we will not give the
On the contraryF°™ has a more complex structure. Never- subleading tails of correlations.

theless, we only need a property derived from E2g), However, in view of the qualitative discussion of higher-
namely, order terms irp, we give more precise formulas fpr, ;(£)
and p, »(X,) at ordersp? and p®2. These expressions are
p(X VFS™ (K, xix)=0(ps)- (38)  derived from results in Sec. Il D of Paper Il. In the differ-
encelt(g) — [Dg (£)31M(&"), only the part ofi!)(§) that
2. Loop-density expansions for tails of explicitly depends org does contribute and, according to a

According to Ref[10] and Sec. VIIA of Paper 1, a tail formula in Sec. IllE and calculations in Sec. IV B of Paper
g(qﬁ)n(r,x,)(’) is expressed as ar?/term independent of any I,
loop density times integrals of function§ that involve
graphslI with weightsp(£) and bondsFe¢, FS™ Fr—W, D(§p'Z(H=2 p, lim f drf Dg,(£')
andW. TheseG's are expanded in powers of loop density 7 RomdI=R
and then in powers of particle density by decomposing dia-

i i 2 ; cc pcm —f Dg (gr)efﬁeaeyv(r,f’vg’)

gramslII in terms of diagramdI; with bondsF*®, F™, 0
[FS)2/2, Frr—W, and W, with Frr=Fr—[F°¢¢]%/2. In-
deed, thep,,,p thenp expansions rely on a scale analysis inIn Eq. (41) we have used notations of Sec. Il E of Paper II
Pioop iNtroduced in Sec. IV A of Paper Il for the derivation of whereE}=[D(X;)En.(X2). The term of ordep? has
the low-density free energy, with the only difference that thethe structure
bond Fry is split into Fr—W and W, because the latter
decomposition is the proper one for selecting algebraic tails.

The orders inpj,o, for F© and F™ have already been

given. Fr(k) andW(k) are known from Sec. IV B of Paper
I, and The loop density withp=2 is

e Beep(rEE)

_paEZ : (41)

\]23/2}(6) _ f DBO( §1)Ji3/2}(§!)_ﬁeipaKDE; . (42)

p(X’)[FRT—W](k:O,X,X,):O(Ploop)- (39 p{;}z(xz)zpi%E:xcha(xz)- (43

We notice that propertig@1) and(35) also hold wherFy is
replaced byFr. As shown below, the expansions of alge- The correction of ordep>< is equal to the term of ordgr
braic tails ofS;nn start at order zero ipjgqp- given in Eg.(43) times ,BeiKD. Equations(41)—(43) will

5/2 2
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not be written more precisely, because the only important o
point is that, after integration ovefor X,, these terms will J dxpp(Xb)€4a,Po2p (KiX2:XD)
give rise to diagonal or exchange matrix elements of two-

body quantum Gibbs factors. k2 )
=P(X2)P2Ce;) 5 +AP(K)
V. CASE B,=0
The diagrammatic structures of leading tails of various - ijd_T(eisz(r)_1)+o(|k|3) (45)
correlations have been given in Secs. VIIIB and VIIIC of o P2

Paper 1. In the present section we immediately select the part
of the Fourier transform of the dressing that gives the conanda priori both 1f° and 1t° tails of h"" should contribute
tribution to the first orders iy, This selection is done to the 1f° tail of interest. However, only the term
from the start in order to avoid writing the more complex k[ p(x.)/«?] does contribute at the first ordem?oop and
formulas that hold beforg,,, €xpansions. pﬁ’,’gp in B, /r8. In other words, terms of interest come only
from 2 p*h""™ 35, as in the case of the particle-particle cor-
A. Structure in Fourier space and dressing at low loop density r%lz?iion, though the ger}(;)rTal diagrammatic  structures  of
The structure of the Fourier transform of the ®ltail of p_“a“b|30:°(r,) and X, €q, P4, l8,-olr) are dlﬁgrent at fi-
the particle-particle correlation has been derived as an edite density. Therefore these terms involve only

ample in Sec. IlA. We recall briefly the main lines of the SN, x1,x2) [and notSGn%(r,x1,x2)]. They read
arguments leading to Eq36). According to Paper I, the

A, . It tail of p?T comes from the 1f tail of
a“™b

A%

2p*h"3 5, and more precisely only from the values of the 1 f
Sp's for k=0 and from the 1® tail S\ox(r,X,,Xp) of h™" 2] dxaPp(x1)| O, e, ~4ThC,
before integration over the shap&s and X,. Moreover,
parity arguments show that only the paﬁ'ﬁ)n[o’ol('r,xl,xz) eaaE pgf D(Xa)p(xa)
of the 1f°® tail of h"" that is even under inversion of each Pa
argument is to be considered. K2
Since3 5(k=0,x1;xa) is exactly of orderp%Op and since
(6)(0,0] 0 - i
S;nn (r,x1,x2) séart; at ordepk,Pp (acco-rdmg to Appen % f dszzeazp(Xz){AS(ﬁ)nlo'olh{ggp(r,X11)(2)
dix A), theAaaab/r tail of the particle-particle correlation at
the first two (();)(?Oeg]g)ﬁmp and ppg, is given by inserting Eq. A (?1{1[0’0]||{01£}(V-X1a)(2)}+O(Pﬁmp)- (46)
(36), whereS;n (K, x1,x2) is reduced to its parts of or-
dersppop and pinay, into Eq.(22). The result is The C/r*° tail of the charge-charge correlation
A 2 eaaeabp(a?c-yrb|8020(r)
a 0y dq:ap

6 :delplP(Xl) Se e _47Tﬁeal
r “a

' comes fromX 5 *h"™ 3 5% . An analysis similar to that per-
5 formed for the particle-charge correlation shows that, at the
eaaPE paJ D(Xa)p(xa) first two orders inpjoop, the C/r° tail arises only from
a

X 2 f dx2p2p(x2) Sp*h"™ 3. Itis equal to

1
e, S pgf D(Xy)p(xp) WI Xmplealp(Xl)f dx2P2€,,0(Xx2)
b

Po

x 560‘2’6% ﬁeaz K2 ><{AASh(n)n[ ]|I{000}p(rlevX2) AASh(n)ﬂ[ ]||{010/%L
6)[0,0],{0 6)[0,0 2! X(ryX1:X2 +0 Ploop) - 47)
X{ (n)n[ ]|I{oc}>p(r’X1aX2) (n)n[ ]|I{01(4p}(r!)(11)(2)} ( X1:X )} ( l p) (

The nonexchange part of the induced charge density
Eyeyp$d(r;5q) in the presence of an infinitesimal external

8 4. o . charge 6q located at the origin is given by the linear re-
The (E)‘;a/r tail of the parﬂcle;harie ?orrelinon sponse expressig@3). It decays as t# [10], as the particle-

Eabeabpaaab|50:0(r) comes fromZp*h"* 5" with 25 charge correlation. According to Sec. VIII C of Paper I, the
=3 p+ pF™+ pFC pFMC according to Sec. VIIIB of Pa- B/r® tail of the induced charge density originates from
per I. The analysis of the structure in Fourier space is th& +h""™XF* | with
following. After summation over charges, the Fourier trans-
form of £F* gives a contribution that begins at ordéd. SE(K,x1ixa) =2k x1ixa) F (X)) FE™(r Xarx1)-
Indeed, (48

+O(piogp)- (44)
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According to Egqs(26) and(28)

f dxap(Xa)€a Pap (K, X1;Xa)

pidT

k2
ah

This expression is similar to Eq45) without the term
A@(k) and with the change oK, into —X;. Another
screening equation reads

(—IkX(

kI3 |.
o —1)+0(|k|?)

=p(Xx1)€q P1

(49

P(X2)P2Ea,

Gupr (Koxz)= k2+O(k*), (50

where G; is defined in Eq.(24). Equations(49) and (50)
imply that the 1v® tail of the induced charge density at the
lowest order inpjo,, is entirely determined b p*h"™* X .

It is reduced to

47
(<27 d)(lplealp()(l)f dx2P2€,p(X2)
X{AS; OO]|I{OOC}:p r X1=X2)+A5£]6)[OO]||{olc/);23}(raX1aX2)}
+ O(Ploop) . (51)

B. Loop-density expansions of the &P tail of h™"

According to Appendixes A and B, ther$/tails of h"" at
orderSpIoop and pIoop arise from purely 1P structures with
two intermediate pointsA,_,, /r® at orderp|oOp is derived
from Eq. (44) with

{0y —

(6)[00 |I
oop™ o

[Ws]2 (52)
whereWs; is the 1f2 tail of W defined in Eq.(32) and the
corresponding part df comes from the diagrarﬁ equal to
Sp*[Fr=W]*Sp. At order ppa,, A, L, /1® originates
from Eq. (44) with

6)[0,0
S('I " ]|{l/2}(rvX11X2)

loop

[ o [ ol

1 , )
XE[WS(r!X1!X2)]

[Fe%p*3p (Xinin))

1
+f dXéE[WB(ryleXé)]z

xfdy

The corresponding part d¢f arises from the sum of the dia-
gram 11,

(53

l ccy2 !
ED*PE[F 191(Ysx2.X2) |-
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1 ccy2
ZD*E[F 1°p* 2p*[FR—W]*Zp, (54
and from the symmetric diagram
1 ccy2
ED*[FR_W]*ED*PE[F ] 3p. (55

The leading large-distance behaviors of these diagrams are
obtained by replacingg— W by (1/2) W;]? and other func-
tions by their Fourier transforms &t=0.

Ad e, /r® at orderpIoop comes from arfsf1 with an alge-
braic structure involving either two or three intermediate
points. In a simplified notation of the objects introduced in
Appendix A, terms with a purely A tail involving two
intermediate points at ord@fgop read

W12V 126192 2 ply2

loop

Pl DGEI(L,1) 5 (2)

+sym. term (56)

or

1
Pl DGEA(1,1) S W51, 2) PG52(2" 2)p{3dy(2)
(57)

1
Plaad DGH(L,1) 5 [Wa(1',2) 1265 (2" 2)plady(2),
(58)

wherepmgp denotes a contribution of the loop densitfy)
with p=1 while p,oop corresponds either to the exchange
term in the expansion gf( &) given in Eq.(41) or it refers to
the leading term inp, »(X,) which is equal to Eq(43).
Terms with a purely 1P tail involving three intermediate
points at ordepIoop are of the form

Plod (DG (1,1, 1) W,(17,2' ) Wy(1",2")

xGi(2' 2)plads(2), (59
whereg, gi¥2 gt andgi are given in Appendix B.
(We notice that in the present case the infl@xrefers to the
order in density of the functiorafter its integration over
position variables.

C. Results at the first two orders in particle density

An important conclusion of Sec. VB is that, at the first
two orders inpyqp, the coefficients of all tailsA, /r
B,/r® C/r1% and B*/r® prove to arise only from
ED h””*ED. >From now on, we replace, by « and ay,
by 7.

Now we turn top expansions by using the properties
Pa,p(Xp)=0(pP) and p,1(€)=p,+O(p?) for By=0 [see
Eq. (40)]. At the first two orders in density the coefficients of
all tails of interest are determined by diagrams wheoet or
interna) loops with onlyp=1 are to be considered. Thus
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fdy is replaced by=,[D(&), andp,(£) by p,. Then the 1 e, e, 1
dressing is reduced to a classical Debye contribution —BVifI(fZ)(f)ﬁo}: %B4h4m 5- (64)

{o}

The expression of- Bviflf@(r)ﬁm} is derived from Egs.
(62), (64), and

; paJ D(Xa)p(xa)Zp(k=0,x1;xa)

5 ATBey P, f s (60
= —e,————— XS X),
Pol Pege™ €7 B0 S [ a0 ayslFE,, 07
Y
WhereSD way is given by Eq(4). Besides, the 17 tail W5 of 477,82 o3
Win Eg. (32) takes the valué6) for p;=p,=1. B2 > Py =y
=e§2w—pa,ea/ €~ |- (69
1. Particle correlation Kp Kp

According to the precedlng section, the first two terms '”By usmg Eq.(60) the coeff|C|entsA{”} (n=2,5/2) of the

the pioop €XPansion ofA,,/r® are of orderspf,,, and Ploop 1/r® tail given by Egs.(61), (62), (64y) and (65 may be
and are given by Eqs{44) (52), and(53). When dressings \yritten in the following concise form:
by 3 are replaced by Eq60), the 1t° tail of the particle-

particle correlation p'2)'(r)[g,—o at orders p" with n o B 47Beq pa,
ny __ —_ —
=2,5/2 reads ALy = 20 papya%z) 5M1 e, K%
A{n} f 4mBe
dxsd e (x)f dysd arY) TP€e,Pa,
rG o D, D.ayy X| 6y a,— 8, > Ai“l}az, (66)
Kp
X[ — BVeEMO) (py|inty, 61
[= BV a,(DI™] (62) with
whereV§®)(r)|{ is defined in Eq(5) and 2 &
(U
{0} Aalaz My, maz, ©7
eff(6) {12 _ eff(6)
Vel 2 Vo () 2
A2 _ g2 g2 (i_,_ 1 )77'8
a1y a1 %\'m m K
ay ay D

<X fdxsg' a,y,(x)dez[FDya (y)]?
Y

+sym. term. (62

o'

4 2
€y Ke/m
X E Pa’ - — 2 2 pye:j/]! (68)
a’ Kp 7

In Eq.(62) “ sym. term” denotes a symmetric term obtained
by exchanging the roles of; and a,. Equation(61) is
indeed equal to the tail of the convoluti@).

In terms of the covariance introduced in Sec. Il C of Pa-
per Il, the squared mean dipolar potential reads

where «2,,=47BZ p.e3/m,. For instance, summations
over o, and a, are performed with the result).

For a two-component plasma of charggsande_, with
massesn, andm_, the previous general formulas at orders
p? andp®? may be specified by using the neutrality relation

(Bealeaz)\al)\az)2 e_p_=—e,p,. Wefind
BV (r)|10=
o T(Z)(r)| " pap'y ﬂ4ﬁ4/ e,e_ 2
1 1 1 1 Pay BO:Or—»oo 6 240\e++|e,|
Xf dslf dszf dsif ds;
0 0 0 0 | _|
X[8(s1—5) —1][ 8(sy—55) — 1] m. P BKDe+|e .
X COVXX(Sl ,Si) Cvax( Sz ,Sé) (69)
2 The ratloA{Sf}/A{Z} is of order @/&p)3, namely, of order

X2
", v

1
auv(?) (63 32 whereT ‘is the coupling constant defined after E9).
The correction is indeed negligible in the weak-coupling
According to the explicit value of the covariance for inde- IMit. We notice that, in the case of a two-component plasma,
pendent particles recalled in Sec. Il C of Paper I, the fourthe neutrality relation implies that the coefﬁmev@tg‘} of the
integrations over the variables give a factor 1/720. Since 1/r® tail of particle-particle correlations at ordep§ with
W[aﬂy(llr)]z 6/r8, we get n=2,5/2, are positive. The corresponding effective interac-
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tion is attractive, whatever the signs of the charges. Morewhich is valid at any distance. Equati@i5) also holds for

over these coefficients satisfy the relation any finite charges, and we derive from Eq(13) that the
B*{%/r8 tail of the charge density induced by a finite exter-
Aln - alnh Al 5 nal chargeq reads
== , n=2,§. (70
Py p= P+P- . 2
. . . . S e pindy 1 3 4Kem o A
We stress that, from a technical point of view, this equality e,p, (r;q) T 830n a9 2l
Y B.=0 —% r K Ke/m q

arises only from the neutrality relation and from the structure
(66) where A, has no special property. From a more (76)

physical point of view, the peculiar identity0) is due to a . . .
classical contribution in the screening of every quantun‘ﬁ'heremq is the mass of the particle with charge At the

. 0 .
charge by the surrounding plasma, as discussed in Se rst ord_erp the response to an external _cha[gmvolves
VIID. oth a linear contribution i and a quadratic one. However,

the latter term exists only if the external charge is quantum—
2 Other correlations according to its origin from the formulé66)—because a

classical external charge corresponds to the lmigoing to
TheB, /r®, C/r'°, andB*/r® tails of = e p2)"(r)[g —0. infinity m
o .

yPay
ind, .
aneae'ypsxzy)-r(rHBO:Ov and E'yeypl)r/] L(r:b‘q)|BO:O are

given by Egs.(46), (47), and(51) at the first two orders in D. Diagrams that contribute at order p3
Pioop- According to Eqs(52) (53), (60), and(65), together
with A(1/r®) =308 and A(1/r8) =56/ we get forn
=2,5/2

First, we recall that in order to perform density expan-
sions we have introduced bondszr=Fr—[F¢¢]?/2 and
[FC€)2/2 to calculate the integrated functions that are in-

H 6 H ccl2 H
47Tﬁealpal] volved in the 1r° tail. [dr[F°°]°(r) is exactly of order

2
Kp

1lpus, Whereas the low-density expansion GtrFg(r)
starts at ordep,(fmp. At orderp%Op the purely algebraic term
- in the 1/ tail of the particle-particle correlation may have a
aParA )y (71)  structure with either two or three intermediate points. We
first consider structure&6)—(58), where the quantum inter-
action involves only two intermediate points, then the struc-
(720 ture(59) where three intermediate points appear in the quan-

4ﬁ4
B{oznil}: - IB_ & E |: 501,011_801

8 KZD ag,ap

1
{n—2}_ 7424 {n}
C 870" — > €4, P a,Ca P, A

aay’

Kp @12 tum term.
At order p® a tail of the form(56) arises from the most
winen T e, 1 (n} simple diagramp[Fgr—W]p, either withp,=1 andp(&,)
B" }_EB h K_‘é a%z CarPaCarParA ey expanded up to ordes? or with p,=2 andp, »(X,) taken

(73 orderp?. According to Eq.(41), whenp,=1 the p? tail

is proportional toA* times diagonal matrix elements of
As already mentioned, at the first two orders in density, theséxd —8H,,,] and exchange matrix elements of
tails arise only fron® p* h"™* 3,5 with adequate summations exd —BH,.]. Whenp,=2, according to Eq(43), there ap-
over charges. On the other hand, according to (66), the  pears only a term proportional td times an exchange con-
smallk behavior of S7, (k) is similar to the term tribution.

p(x2)>@ (K, x1:xa) Of order k|2 given in Eq.(26) and At order p3, all density weights in Eqs(57)—(59) are
which is of order 14, plads. and only loops wittp=1 do contribute at ordes®. A
tail of the form(57) appears among the various 4tails of
| €.Pu p[Fr*Sp*pFr*Sp*Frlp. At order p° one of these tails
2> eS8t k) ~ =55k (74 (namely, the tail where ever}ip, is replaced by its pard)
4 k-0 Kp gives a falloff
and we retrieve Eqg71) and(72) from Eq.(2). Thus, at the 1 1 1
first two orders in density, the tails coincide with those of the p E[FCC]Zp*E[Wg]Z*pE[FCC]Z p. (77)

convolution(2) with adequate charge summation.

At the first order in density we get Eq6l3), (14), and . o ]
(15). Comparison of Eq(15) with the linear term with re- 1he coefflcgent of this tail is purely proportional fdf"
spect to the given charge, in Eq. (13 shows that the alge- ~ The 1f° tails of the da'agramSP[FR*PFR]P and
braic tails of the linearly induced charge density and of the?l Fr* PF** pFrlp_at orderp® are of the form(58). For

. ? . . 3 6 H H
particle-charge correlation satisfy the more general relationinstance, at ordep” the 1f® tail of the former diagram de-
cays as

> e,p2)(r) T -
2 eyp';d(r;ea) = lim yp—, (75 p E[Ws] *P[FRT_\/\/]+[FRT_W]P*§[W3] }P-
Y Pe=0 pa—0 @ (78)
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In fact W does not contribute tgdr[ Fgr— W] according to D

Eq. (35). A new dependence updh appears in this tail: a zyzf dxap(Xa) e, o

purely #° term arises from a* in [W;]? and from an#? r i

contained in the “diffraction” contribution

[droc™(r,x2,xv) in the decomposition ofdrFr+(r,x2.xb) x f dxop(Xb)de, .»Spp (M XarXn)-  (83)

(see Sec. IV B of Paper)ll

A structure where the quantum interaction links three in'Sinceh“”(r,Xl,Xz) decays at least asr¥/before integration
termediate points, with everg=1 at orderp?, arises from over loop shapeX, andX,,, h"(K, x1,x») contains singu-
the diagrampFrp[Fr*pFg]. This tail is of the form(S9)  |arities from order |k|° on; thus the Fourier transform

because it is the sum of three contributions, Sézp)(k,)(ayxb) involves terms of orderkk|°, k|, and|k|? in
the smallk expansion of2 (K, xi;x,) Where y, is a root
PWapl(Frr=W)p*Ws] + pWap[ Ws* p(FRT_W)](7ga) point. According to Eqs(Z%) and (28), 3% is even under
inversion of loop shapes of root points, while the teﬁi@(q’
+ pWap[ Wap* W]. (79p  of order[k|% in X7 is of parity (—1)9 under inversion of
each internal loop shapk;; the latter property constrains
Equation (799 involves matrix elements of ekp BH,, ] the parities of the tails ofi"" that may contribute after inte-

and exb—BH . _1whereas Ea(79b) is purelv proportional to gration over loop shapes. In order to simplify notations, we
46 b= AHa,,) Q79D is purely prop will not indicate the parities ofSf but only those of

Eventually, terms of ordep? in A, are equal to sPIea’l A first contribution given by the dimensional
analysis of the order ifk| is

3) 44 pi3126
(a3 + f oy () 1%+ DI2IAEC, (80)

. . - f Xmf dx225 (K, x1ixa)
In Eq. (80) f,,(%) is a function off. which is fully quantum
because it involves either a diagonal or a nondiagonal matrix x SN0 g s X)SEO(K xixs)=0. (84

element of exp—BH, .

Equation(84) vanishes, becau RS ) according to the

VI. CASE By#0 general study of the structure of tails before integration over
loop shapesgsee Appendix A of Pape.ISC)(K, xa, xp) May

In the following, we will omit the indexe8,. As in the : P
pe written as the sum of three contributions,

caseBy=0, the scheme of the discussion is that presented i
Sec. lll. In particular, we use the results of Paper | about the
structures of diagrams that contribute to the various 1/ J dxlf dx20(x1)FE™ (K, xa,x1)
tails. Since summations over charges do not change the ex-
ponents of the leading algebraic tails—their consequence in ><SE1?1)n[1'1](k,X1,Xz)P(Xz)Fmo(l)(k,Xz,Xb), (859
the diagrammatic language is only to suppress contributions
from some diagrams—theD!2(r)/r®, D?(r)/r® and Di1o
DB(M)/r5  tails  of (2)T(ry) s e.0@7(r), and f Xmf dx2p(x) F™D(K, xa x2) Sy 2K, x 1. x2)
1 ’y 1

pa'y ’)’pa/'y
2 /88,00y (1) (Wherer=r/|r|), respectively, satisfy SOk, xz: xp) -+ Sym. term, (85h)
D& = D2 1 1
=2 e,D B[ dyy | oSOk SOV Kox1,x2)

@ 2 where we have used the identities*(@=3© and
P¥=2. ee,Des. 82 3500k,x ) =p(x)F™(k,xi1x).  The  symmetric
term in EqQ.(85b) is obtained by exchanging the roles ypf

These identities are explicitly checked at the first two order&NdXxo -
in density in Appendix C.
B. Density expansions
A. Structure in Fourier space 1. Loop-density expansions

According to the analysis in Sec. VIII B of Paper I, the All dressings in the nonvanishing contributior{85),

D, /r® tail of p{3 T is given by Eq(22) whereh is replaced  namely,S§©(k, x1;xa) and=5™M(k,x1:xa), are exactly of
by the 1r° tail SO (r y.,xp) of S5xh"= 3% with  order zero in density. We notice that, on the contrar(?®
y bp XaXb D

SH(rx1:xa) defined in Eq. (48 while Si(K,x2ixp)  andS3P9"Y with g=1 starts at ordeD(pj,d), according
=3p(K, X2 X6) + P(X2) F™ (X2, Xxb). The 1% tail of p@T  to Egs. (26) and (28) and the expansion of[1
may be written as + (k% )17 1. For instanceX®@(k,x1;xa) is the sum of
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two terms of orderp;,o, andpp,,,, respectively, bub 3 is
involved in faster falloffs than those considered here, be-

cause of parity argumenfsee Eq(84)].
As a consequence, at the lowest order m,op,

(k Xa:Xp) IS merely given by Eq(85) whereh™" is re-
placed by its value at first order p),q,. The first term in the
and 1r° tails of
They are reduced to the bony
possibly convoluted With bondsF°¢ or pF™¢, because the
first term in thek expansion ofpF¢¢ or pF™¢ is of order
p,%op. In order to take advantage of parity arguments, it is

low-density expansmns of ther®] 1/
h"" are of orderpIOO

convenient to rewritdV given in Eq.(32) asW=X,_;W,,

with W,, decaying as 1/", and to push the decomposition

further by writing
n—-2

Wal i £)= 2 gt X)),
(86)

where

[ 4] __ A e B _

w (kX LX) = ’Be“ie“on dTJO dr'{s6(7—P(7)]
—[7' =P(r")]D—1}ik- X;(n)]"
x[—ik.x-(r')]'14—w (87

] kz

is of parity (—1)" [(—1)'i] with respect toX; (X;). With
these definitions, we get in Fourier space

S(WO) [1, 1]|{0} _ W[l 1] =W, (88)
(1)[1,0

Sh )| ]”ggp 2W[l 2] (89

Sf)[o O]l{o} W[z 2] (90)

At next order in loop density

SnMlloea =0, (91)

1)[10|{1/2} {1 12]_|_

;WLLZ]chc(O) + ng,llmeo(l)} ]
X 1[FC°]2(k=0) (92
p 2 1

1
—wi2A4 | Zw

2 [52,2]p|:cc(0)

Shnn[o 0]|{1/2}

loop

1 1
+ EWEE'”IJF”““””pE[F°°]2(k=0>

+sym. term. (93
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2. Cancellations at the first two orders in particle density

At the first two orders in density, many contributions in
S()(r) cancel each other by virtue of the identity

1 1
f DBO(§){§[k~§(S)]2—[k-§(8)]f0dS’[k-§(S’)]]=0-
(94)
Indeed, the left-hand side ¢94) is equal to

[k].[K],

1 1
Ecov;jv(s,s’;Bo)— fo ds’cov;j,,(s,s’;Bo)},

(99

with an implicit summation over the space indigesand v
(m,v=1,2,3). The property cgy(s,s’;Bo) =
—coVy(s,s";By) derived in Sec. V C in Paper | implies that

[K1.[k],cov;,(s,5";Bo) =[KI;COV, ,(5,5";Bo). (96)

Then we use the following property, which can be derived
from the explicit value of the covariance given in Sec. IlI C
of Paper II:

f ds’'coVi,(s,s’;Bg)= 1co Ve, (S,S;Bg). (97)

Of course, this identity is also valid for cgys,s')
=IimBo_>OCO\/;‘X(s,s’;BO). Then, Eq.(94) is proved.

The identity(94) allows one to show that at first order in
density,

1
SO & &)= wlAr g, &) (99)

The reasons for this simple expression are the following.
SOy xa.xb) is given by Eq. (85 where ¥ and
meC(l) are exactly of ordepy,,. In order to prove Eq(98),

we reorganize the effective contributions coming from
2 5*W+XE in order to exhibit the combinatiof®4). In Fou-
rier space we get the sum of (1Y% plus

ch(l)p

(993

W[31’l]mec(l)+ %Wal,Z]pFCC(O)}

(99b)

T %FCC(O)p[WLZ,l]mec(l)_I_%WLZZ]chc(O)}

+(sym. term,
(999

1
W[42,l]mec(l)+ EWESZ’ZIPFCC(O)

1
2

where (sym. term denotes the symmetric term
(12 Fem D pwlA 4 (1/2)Fec@pw22] - At first order in
density, only loops with p=1 contribute. Since
Fe<O(k,a,a") andFC”‘(l)(k,gr ,&) [or F™(k, £ &)] only
differ by an extra factorIidesAag(s) k, the definition

In Egs. (92) and (93) charge indexes and summation over (87) and the property94) imply that only the tern{98) does
species of intermediate points are implicit as in the notatioreontribute to the 1P tail S(S)[00 at the first order in density
of convolutions in position space introduced in Eg5). p.
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At order p®? the same cancellation mechanism impliesand, according to the value of the de Broglie thermal wave-

that the 1¢/° tail S{)1*% comes only from

1 1
ZWEZ’%EJ dr[F°%(r)122 Y + sym. term.  (100)

This cancellation mechanism seems to be specific to the first

order in density. It still partially operates at ordet?, but

from orderp® property(94) cannot be applied when the ex- According to Egs.(83), (100, and (60)

pansion ofp(&) is used at orders higher than or when
pa2(X3) occurs.

3. Particle-particle correlation at the first order in density

In the case of the particle-particle correlation, e, / rd
tail is given by Eqg.(83) where, at the first order in
p, SCX(r xa.xp) is reduced to (1/4y*?, according to Eq.
(98), with p,=p,=1. The Fourier transform of the{2}/r®
tail at the first ordep? reads

fldslfldsz[&sl_sz)_1]F2‘;(k151152)' (101
0 0

where

Foo(K.S1.52) == pupyBeL@NNS

X{%f Da,Bo(§1)J D,,(&)

47
X[k- £(s1)]7k- §z(52)]zp} : (102

In Eg. (102 we have added the indexin the notation of the

measureDBO(g) in order to recall the dependence of the

measure upon the species whegw 0. Integrations oveg,;

and &, lead to the appearance of covariances of Brownian

bridges in the presence &,. According to Eq.(96) and
COVy=COVy,
[K1.[K],c0V;,(s,S";Bg) =k?COVyy(S,S';Bo=0)
—[k]Z6C.(s,5";Bo),
(103
where
6C,(s,5'";Bg)=C0V,(S,S";Bg) — coVy(S,s"; Bg)
=COVi,(S,8";Bp) —COV,(S,S";Bp=0).
(1049
So the nonanalytic term ifi- - -} in Eq. (102 is equal to

[K]Z 1
7 0C4(81,51)6C(S2,S7).

4 2 4

(105

We notice that 47[k]§'/k2 is the Fourier transform of

1 P4(cos9)
(?ZZZ F 224r—5 (106)
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length\ .= VB#%/m,, we get Eq.(8) where
1 1
A(Uc, aUcy)E6L dslfo dsy[ 6(s1—s7)—1]

X 6C,(51,81)0C(s;,S,). (107

DI2/r® may be
seen as arising from the convolution

_ pvyefi(5)| {12 |
pag2 [ IBVaaZ | ]*Sg,azy
+0y 2 SB[ BVED|2], (108
ay
with

{0} 1 e )
pa,f dXE[FD,a’az(X)] .
(109

eff(5) {12 _ eff(5)
Vaten(DI72= 2 V(D)

a1

Now, we turn to the explicit values of tHB,M/r5 tail at
the first two orders in densityD!} with n=2,5/2 may be
written in the concise forms

D=~ B%h*P4(cosh)pap,e.e,Dly P, (110
with
D= A(ug, uc,) (111)
aV_mamy CaYCy
and
3
mB? 1 477’82 Py €y
D{l/Z}:__ _ Y
ay Kp m Y K2
@ D
eiz
X Paym A(Ucq,,Ucy) +sym. term.
az aZ
(112

In Eq. (112 the symmetric term is obtained by exchanging

the roles ofe and y. Comparison of Egs(111) and (112
shows that, according to E¢L10),

3
47TB2 p'y'ey’
')/,

P4y 2

2

sy TP
D{a'y}___
Kp

—e|S &2 D
Kp Y ay

a2 aa2

3
477,82 pyE,
’yf

2
Kp @

+p,L, —e,|> e’ D!

Yoy
(113

The analytical expression &(uc,,Uc,) is determined

by dynamics of independent charges in a magnetic field. The
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covariance that characterizes this dynamics has been explietenceforth, sincd=°"(k,x,,x1) =0O(|k|) and according to
itly derived in Appendix A of Paper II. The values of interest parity arguments,

are
COVL,(S,S;Bg) = m3|nr(suCa)S|nr([l— SlUca)
(114
and
1 1
f dSCOV)C:X(S,S): L(uCa)1 (115)
0 2uCa

wherelL(uc¢,) = cothuc,—(1/uc,) is the Langevin function.
By using the definition(104) and Eq.(115 we get

1 1
6C,= fo dsdéC,(s,s)= 50

Ca

L[S](uCa)i (116)

with LEB(uc,)=L(uc,) — Uc,/3 defined in Sec. II B of Pa-
per 1. The value ofA(uc,,Uc,) is given in Eq.(9). In the
case of particles with the samog,’s, a straightforward limit
of Eq. (9) leads to

A(ucQ,uCa)=§[L[cotha]2+ > cothuc,+ —

2| 2ug, 202, 45
7 3

_6uéa_u€}' o

4. Induced charge density
The D*/r® tail of the ratio= e, p"*'(r)/5q for the lin-

early induced charge arises from diagrams which are differAt next orderpjag,,

ent from those involved in th® ,/r® tail of the particle-
charge correlation for finite charges of the plasma/r® is
given by Eq.(23) whereGy(k, x5) is replaced by the Fourier
transforms(k, xz) of its 17 tail SE(r, xa),

D* 4

_ 1
r5

v dxapua)paeaasg‘g(k,xa)l<r>-
(118

In fact, according to Sec. VIII C of Paper$gh)(r,)(a) arises

only from the part of h equal to FeMpxh"™[3}5*
+pF™% pF™]. In other words SE(k, x,) is the nonana-
lytic term of order|k|* in

f Xmp(Xl)f dx2F°"(K, xa x1)

thn(kv)(leZ)G{EB* +me°*meC}(k1X2)- (119)
A straightforward calculation leads to
Gzxx + prmex pFma (K, x2)
p2d T
=LX22)ea pok? 1+f “Lik-Xo(7) |+ O([k|Y.
K 2 o P2

(120

p(x2)
sk =2 [ dxaplnn) | a2 e, 0,

Xch(D(k-Xa’Xl)[ Ok, x1.x2)

p2d T X
+ SOk, x 1, x2) fo p—;lk'xz(Tz)]-

(122)

The Fourier transform ob*/r°® tail is given by Eqs(118)
and(121).

At the first two orderg,q, and p%’ﬁp, we insert Eqs(28)
in (121). We use Eqs88) and(89) for contributions of order
Pioop @Nd Eqs(91) and(92) for terms of ordepﬁ,’gp. At order

Ploop: D*/r® is the inverse Fourier transform of
47
- 7f dx1p(x1)€4,P1
pld’Tl X
Xf dXzP(Xz)eazpzfo E['k'xl(ﬁ)]

1
X{§W£11’2](ka)(ly)(2)
p2d Ty .
"’Ws(k,leXz)fo E'k'xz(Tz) . (122

32 it is given by Eq.(122) where{---} is

replaced only by the valu€92) of St (K, x1,x2)|{2 .
As a consequence, only loops wifh=1 are involved at
ordersp andp®?.

According to the cancellation mechanis{®4), the tail
(122 of the induced charge density, which is derived from
the linear response theory in the loop formali@f) vanishes
at orderp,

D*2=0, (123

and appears only at higher orders in density. This result can

be retrieved from Eq.(75): though the part{p[F°°
+FMp* h"™ pF™C(r, xa,xp) IN 2H*h"™ pF™C is linear
in e,, this linear term does not contribute at order to
3,e,p'2)7(r) because of the cancellation mechani@) at
low density.

The latter result is in agreement with the valms?
==,e,D!Z for the coefficient of the 1P tail of the particle-
charge correlation at the first ordef. Indeed, the infinitesi-

mal induced charge is generically given by the linear term in

()1

e, in the particle-charge correlatiahe,p,, (r)/p,, as re-

called in EqQ.(75). Thus

(124
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Indeed, the coefficient of the f/tail of =.e,p{)(r) starts
at orderp? and involves the charge, throughA(uc, Uc,)
at this order. Whenu.,=(B#%By/2m,c)e, tends to zero at
uc, fixed,

) 1 Ucy
A(Ucq,Ucy) UCa 5~ —cothuc,+ + —==
Uea—0  AUL, cy 3
3 5
uc, 2ug,
25 T 945 (129

ThusD!? is nonlinear ine, whene, tends to zero, an®*
vanishes at ordep. According to the relationg75) and
Di?'==.e D!Z, together with Eqs(110 and (125, the
nonlinearly induced charge at orderis

2

. q €
2 epiinia)lll=—p%4 1 X py T Alucg.Uc,)
> 0 mq y m'y

><—P“(f50 9 (126

It is cubic ing/my wheng/m, vanishes.

We now turn to the tail of the linearly induced charge

density at next ordep®?. Since only loops wittp=1 con-
tribute at this order, the cancellation mechani@#) at first
order in density operates and only the

(12w} p[Fe1%/2 appears in San %k, x1.x2) V2
given in Eqg.(92). According to Egs.(121) and (87), the
Fourier transform oD*{3¥2/r> comes from

3
g2 477,82 py€, ) .
an v
B 2 2 e eiz dslj ds,
Y ay 0 0

Kp Kp

X[ 8(s1—55) — 1]F"(k, sy ,5,),

yay

(127

whereFS" is defined ag=?? given in Eq.(102 with the
{---} replaced by

11
[Efo dsf Dy,BO(fl)J Do, By(&2)LK- &1(s)][K- &1(s1)]

4
X[k §2<s2>]2k—f] . (128

The nonanalytic term in Eq128) is similar to the nonana-
lytic expression(105 with 2féds§Cy(s,sl) in place of
6C,(s1,81). After integration oves the factor 2 is compen-
sated by the factor 1/2 arising from E®.7) and comparison
of Eq. (127) with Eq. (113 shows that the identity124) is
indeed satisfied at ordgr’2. The explicit value oD*{%% is
then derived from Eq(113 with the result

2, p,}//ei,

D*{3/2}: —4772B37—42 e’}/ei’DE/Zi’ . (129)
Kp a'y
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C. Weak or strong magnetic field

In the limit of a weak fieldB,, A(uc,,Uc,) behaves as
(1/3150u¢,ug, and D, is proportional to#®B3. More
precisely,

ay

(2)T

B2 (Oly ~ ~Pabyzs e
ay V1B Py50200°

(el

5 .

m,/ \m,/ |\ c r
(130
In terms of dimensionless parameters
Dey  gop| A (A Z(IS'M Bo)%(Bus,Bo)’
papy a a Ba0 By20 (131)

In the strong field limitA(uc,,uc,) tends to 1/30, an®,,,
becomes independent froBy,,

1 e, e
(2)T — o p3xpd4_x TV
Pay (r)|BO o papysoﬁﬁ m, )
16 ¢z (m} m o 1
X|1=60=——5=7 — +— | +0| =z
B*h*Bo\ €2 e? Bo
P,(cosd
x#. (132

We notice that the limits where, tends to zero or wherB,
goes to infinity do not commute, since goes to zero in the
first case and to infinity in the second case.

VIl. ONE-COMPONENT PLASMA

In order to get correlations for the OCP with moving
charges_ from expressions calculated for a two-component
plasma(TCP), we first insert the local neutrality relation in
order to replace every produet p, by —e_p_. In a sec-
ond step, we use the same procedure as in Sec. VI A of Paper
Il: m, goes to infinity, there, vanishes whilep, becomes
infinite. Moreover, we rather consider the following objects
which remain finite even if one density goes to infinity: the

Ursell functionh,,,=p3T(r)/p.p, .,

Z eypyhay:_e—p—z Sgr(ey)hay (133)
Y Y

and

E eaeypapth:(e_p_)ZaEy sgr(e,)sgrie,)h,,,
(139

where sgné,) denotes the sign oé,. In the limit of the
OCP, onlyh_ _ is expected to survive and the left-hand side
of Egs.(133 and(134) should be reduced te_p_h__ and
(e_p_)?h__, respectively.
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A. In the absence of B 2 o(2) {2}
. e—SOCPsinggk)|B0 4 4
WhenB,=0, for a two-component plasma, according to 478 5 =— EA ocA Uc)(Bhwp)*(costy)”,
Egs.(69), (13), and(14), K '
(139
Ry (1) B ece \Fe  lef1 ith Bhiw /2= phe_By/2 d the pl fi
wr(DlB0 ~ Sl =] | ==+ —| =5 with uc=pBhw2=phe_By/2m_c and the plasma fre-
. 240\ e, e ] [m, - m_ ] quencyw,=\4meZp_m_,
(139
3 1 3 ) 15
S epoh(n) B h* e,le] AOCF(uC):%JrE(coth) +Ecotmc
S Pyl 00 e 32 (e, e |)? ¢ ¢
2 7 9
e _lellfe. le-l]*1 TR (140
m, m_|my, m_|r® Ue 2lc
(136 Second, we exhibit the nonanalytic contribution in gife
term insgc)p(k)|BO which is given by the low-density limit of
D T _ 7B°h* 1 1 2 the exact sum rulél6). The latter expression is expanded up
et €a€yPuy (r)|B°:0r_m 1672 (10 e, +|e_| to order p? at uc fixed. In other words, the expansion is
performed with respect to the dimensionless parameter
e2  e?]? w3 wi=4mp_m_c?/B§ which appears in Eq17). We ob-
m. M (137 tain the structure
. 2 q(2)
In the limit of the OCP taken as recalled above, the® 1/ e Sice k)
. : i 47B———-—=1+p[alP(uc)+ bt 2
tail of p2)/p p., and the 18 tail of = ,e,p2)"/p,,, derived ™8 K2 plat™ (uc) +b(uc) (coshy)]
from Eqgs.(135 and(136), respectively, vanish whatever the 2r (2} @ )
values ofa or v, as it should. Indeed, only_ _ is expected +pTat(uc)+ b (uc)(cosy)

to survive anch_ _, which is in fact a charge-charge corre-
lation, decays as fast asr}y, according to# expansions
[11,12) or perturbative results in the coupling constpt®)].

+c(uc)(codp)*1+0(p?), (14D

wherea!™, b{™, andc!™ are functions of the single variable

i )T 2 ()T -
Besides 2, ,e.8,p,, tends toe”pacpand, according 10, . ando(p?) denotes a term of order greater thah The
Eq. (137, term of orderp in 477Be28(02gp(k), though anisotropic, is

4 analytical, as it should be, while the term of orger con-
e’ ; : 2~{2} 411,12
2 ()T 2z 4 il tains a nonanalytic ternp®ct*(uc) (cost)?|k|*. The latter
et Nlg -0~ f . 138 . ; CIAM=k
poce )|BO*°HOC16772’8 m2 10 (139 one does coincide with our low-density res(89).

B. In the presence of B VIII. CONCLUSION

In this section, we compare our low-density result with A. Compared qualitative results
the algebraic tail derived from the low-density expansion of

. 2 1. Sign of the interaction
the exact sum rulél6). The singular term of ordek|? in the

Fourier transform ofSoce(r)|g :p,5(r)+p%gp(r) is de- WhenB,=0, in the case of a two-component plasma of
) 0 chargese, ande_, with massesn, andm_, the effective
noted bySgépsi 5k)|B . ; . ; : . :
sin 0 interaction associated with ther%/tail of the particle-

First, we calculate the low-density limit of particle correlation is attractive at the first two orders in den-
S(C)Z%Psinék”Bov which is derived from our low-density path sjty, whatever the signs of chargd$ndeed, the neutrality
integral formalism. The? term, Seq,§K) [}, in the low-  relatione_p_=—e. p, implies that the coefficienta ;) at
density expansion of the nonanalytic term of orderorderp”, with n=2,5/2, are positive according to E¢(§9)
|k|%, S82psinK)e,, is given by the Fourier transform of the and(70.] - _
D{OzéFlr5 tail calculated at the first order in density. The low- The peculiar identity70) between allA,,/pap., with n

(2} 5 , ! =2,5/2 is due to a classical contribution in the screening of
densityD L/ r tail of the OCP is derived from the result for every quantum charge by the surrounding plasma. It is no

a two-component plasma, as in the absencBgpfAccord-  |onger satisfied at higher orders in densjt§ with n=3,

ing to Eq.(8), the[D{2}/p,p,1/r® tail of h,, for a TCP is  pecause then quantum dynamical and statistical effects are
proportional to[e,e,/m,m,JA(uc,,Uc,). In the limiting  involved and destroy the symmetry between various species
processm, goes to infinity there, vanishes, so thai., of particles, as shown in Sec. VD.

tends to zero; thus, according to E425), the tails ofh, , In the presence d8,, the sign ofP,(cosf) varies wherd
andh, _ vanish whileh ocp=h_ _ . According to Eq(106)  ranges from 0 tor, so that the effective force is either at-
and [k]3/k?=|k|?(cost)®, the Fourier transform of the tractive or repulsive according to the relative orientatioof
D‘géplr5 tail (8) reads r andB, as well as according to the relative signs of charges.
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For instance, whed=0 P,(cosf)=1, the force is attractive 1. Consequence of classical internal screening

(repulsive between charges with opposit@ame signs; When B,=0, internal screening of monopole-monopole
when6=m/3, P,(cost)<0 and previous results are reversed. and monopole-multipole interactions plays a role in the cas-
cade of power laws as mentioned in the Introducti@ee
also Sec. IV B of Ref[10].) From a technical point of view,

First, we consider the variation of the coefficients of al-at finite density, the screening of the total charge of a loop
gebraic tails with respect to the temperatirand the den- surrounded by its Debye polarization cloutbrresponding
sity p. Up to a numerical multiplicative factor that involves to the bond°®) combines with diffraction effects described
masses, the dimensionless coefficigqt,| is proportionalto by a monopole-dipole Debye interacti¢nontained in the

bondF°™ and this interplay leads to cancellations of some

A4 tails when particle-charge or charge-charge correlations are
al’ (142 considered.

At the first two orders in density, it happens that only the
with notations of Sec. Il C.X is a generic notation for the de Debye approximatiorS‘;'le of the classical structure factor
Broglie thermal wave length|D,,|, which has the dimen- is involved in the mechanism responsible for this cascade.
sion of an inverse length, has a similar dependence, Indeed, at the first two orders in density, the exact expression

for All}/r®, with n=2,5/2, is equal to the tail of the convo-

_ (143 lution (2). The Debye-Hukel structure factor by itself satis-
a fies both the charge and dipole sum ru{éd4) and (145,
~ because th& expansion ot yeySCD"M(k) starts at ordejk|?

Henceforth,|A,,| and|D,,| have the same sense of varia- when|k| goes to zero. Henceforth, E(®) leads to the cas-
tion with p and T. They both decrease as the density iScage of power laws in the low-density limit2se A,,=0
lowered or as the temperature becomes higher. The relativg 4> o g . as it should—while3{"~1/r® andCin-2}/y 10
corrections may be expressed in terms of dimensionless pgg, nazaz,g/z, coincide with the tail of the convolutici®)

rameters which are indeed small in the regimel and ity adequate summation over charges at corresponding or-

2. Dependence upon thermodynamic parameters

|Agy T

A4l

|D017|O<F E

(NMa)<1. ders in densit
. . Y.
Second, we address the dependence upon the intensity O?We notice that the tail of the convolutig@) may also be
Bo. When B, is weak, D,, is proportional to ﬁgBé' interpreted as the tail of

whereas, in the strong field limit, it becomes independent

from B, and is only of orderi*. The coefficientA,,,, of the

1/r® tail whenB,=0[2] has the same dependence upioas > selreg [ — gyef6)] {0}, gelreg. (146)
D, in the strong field limit. An interpretation is that, in agap 1 f1%2 w2y

some sense, therf/tail that appears only in the presence of

B, is more quantum than the rf/tail, because statistical whereSS7%9is the structure factor of the corresponding clas-
effects of By are purely quantunisee also Sec. VIR  sjcal multicomponent plasma with proper short-distance
However, when the intensity d8, increases sufficiently, a regularization. Indeed, a quantum multicomponent plasma is
new effect appears: a strong fielB§ enforces a localization stable againsmacroscopiccollapse[14,15 only if all its

that drives the system into a semiclassical regisee Sec. negative or/and positive charges obey Fermi statistics. On
VIB of Paper ), and the Ir° tail becomes “less quantum” the contrary, a multicomponent plasma with Maxwell-

as regards its order ifa. Boltzmann statisticéand classical or quantum dynami¢gs
a well-behaved thermodynamic limit only if the Coulomb
B. Algebraic screening interaction is regularized at short distances by addition of a

r§hort-ranged repulsive potentiadg(r). (Quantum dynamics

Algebraic screening at large distances is compatible wit lone onlv prevents the collanse ofiaite number of point
the sum rules enforced by both internal and perfect externdl yp L P P
harges with opposite signs.

screening which must be satisfied in any classical as well a8 The link between Eqs2) and(146) is the following. The

in any quantum regime. As recalled in Sec. 11 B of Paper | . Ireg
internal screening means that c!assmal structure fact@®;,;* may be represented by Mayer
diagrams and

f dr> e,S,,(r)=0 (144)
’ Sg;eg:%va'y_'— CVJ_E;IZ Sch,aal*hzr::(c:yl‘zregk S(I:Dl,az'yl (147)

and

wherehz';fj'zreg is defined in Sec. VIII C of Paper |. By virtue

f drr% €aSay(1)=0. (149 of rotational invariance of all interactionfsdrrsg'ieg(r)=0
at any density. Besides, a remarkable fact is that, at the first
On the other hand, perfect external screening refers to thiavo orders in density (but not at higher ordejs
fact that the total charge induced in the plasma in the vicinityf dr S3;°4r)|{" and fdrr2sgy°{r)|("~ Y, with n=1,3/2, are
of an infinitesimal external chargéq is exactly equal to  determined only by the Debye potential and are independent
—4q. from vgr(r). Indeed, according to a scaling analysis similar
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to that devised in Sec. IV A of Paper Il, EGL47) implies e.p
that the zero and second moments Sjf;* involve only > eSy, (k) ~ ==
Y

| D ay 5 k2. (152
Sb.«, forn=1 and k-0 Kp

| 1 y ol A consequence of E¢152) is that, wherB,=0, sincex?
> S wa* 5 LF B aya) * S sy (148 is of orderp, the orders in density of the leading coefficients
a2 A.,, B,, andC in the zero-density limit also undergo a

2 0
for n=3/2. Thus the tails of Eq146) with or without charge ~¢@scadeA,,, B,, andC start at ordep®, p, andp”, re-

summations at the first two orders do coincide with thoseSPectively. As a consequence, the coefficient of the charge-
given in Egs.(2), (5), and(62). charge correlation does not vanish in the zero-density limit.

We notice tha‘szl,yreg satisfies both the charge and dipole This reflects the fact that results obtained in the limit of an

sum rules(144) and (145 as well as the quantum structure infinitely dilute plasmg do not coincide with calculation§ per-
factor S, independently of the choice of the short-rangedformed for particles in the vacuum, where no screening ef-
potential vgg(r). Henceforth, the interpretation of the fect takes place. .
A1 tail, with n=2,5/2, by Eq(146) is still coherent with When Bo#0, there is no cascade of power laws and the
ay : A low-density limits of tailsD,/r> and D/r® of the particle-
the cascade of inverse power laws. y @ . the pe
charge and charge-charge correlations are just given by the
Doy/ r® tail of the particle-particle correlation with adequate
) ) . Summation> e, and X .e,, as it should. This property
We stress again that the basic rule of perfect screening @{olds at higher orders in density, because the diagrammatic
an external infinitesimal charggy is not destroyed by alge- structures of the various i/ tails merely involve fewer and
braic quantum Screening: the integral of the induced Charg%wer diagrams as Charges are summed over, according to
in the bulk is exactly opposite téq. According to Sec. Sec. VIIIB of Paper I. The coefficients of all these ZLtails
V B 3 of Ref. [4], at quantum as well as at classical IeVeIS,Start at Orderpz_ The 1[‘5 ta” at orderp2 does disappear
both the static charge-charge correlationC(r)  after integration over angle§This was shown at any finite
=3, ,8.8,S,,(r) and the response functigdf5dsCr(r,s)  density by the use of general analyticity arguments in Fourier
obey the charge and dipolgnterna) sum rules(144) and  space given in Sec. VIC of Papen [The latter result is
(145 satisfied by = ,e,S,,(r)/p, (which describes the compatible with Eq(150).
chargee, surrounded by its polarization cloudC(r,s) is For the OCP, as in the case of multicomponent plasmas,
the time-ordered charge-charge correlation function irthe quantum response function does satisfy the above perfect
imaginary time, and the quantum linear response reads  screening sum rulél50) (see page 1122 of Rg#4]). More-
over, in this system, the extra exact sum ridlé) determines

2. Perfect external screening

S e pMk: 5q(k)) the coefficient of the term of ordék|? in the charge-charge
y Y 4 (1 correlationCoce(k) =e?SocHK) itself, because the motion
5q(K) = Fﬁfo dsGy(k,s). (149 of the center of mass happens to move independently in the

harmonic force created by the background. We notice that

Thus the perfect external screening provides a sum rule th&f€re exists another constraint in the absendgqdfsee page
determines the Fourier transform of the response function up66 of Ref.[6]): the mechanical balance enforces the value

to order|k|?, wheneverB, is switched on or not, of the |k|? term in 3 e, p*"(k; 8q(k))|s,-o/ 8a(k), and
subsequently, the value of tilke|* term in 5dsCocd By=0
fldsCT(k,s) ~ ikz_ (150 by virtue of Eq.(149. The latter terms are analytic, which is
0 |k|—0 Amp in agreement with the fact that the charge density
Eyeyp';‘d'L(r; 4q) induced by a point chargég decays faster

We stress that in the quantum caglsCi(r,s) is different  than 1t5 whenB,=0, in fact as 1r® [13].
from the charge-charge correlati@qgr), and there is no sum

rule analogous to Eq150) for C(r). However, the classical C. Comparison with # expansions
version of Eq(150), the so-called Stillinger-Lovett sum rule, ) )
determines  the second moment  of CSMeq(r) In the case of a m.uIt_lcomponent plasnfa,expansmns
=3, e.e,5eqr), correspond to MB statistics apd they are aI_onved only if the
wyTaTyTay Coulomb potential is regularized at the origiim order to
avoid the macroscopic collapse of the multicomponent
coreqk) ~ ——Kk>2. (151 plasma, whatever the latter is in a classical or in a quantum
\k\—>04775 dynamical regimg For instance, point particles may be re-

| o _ placed by spheres described by a repulsive hard- or soft-core
Moreover,Sﬁ,’a7 glso sausﬂgs the glassmal external SUMpotentialusx(r) (see Sec. VIIIC of Papen.In fact, i ex-

rule. Indeeld, the diagrammatic relati¢h47) and the fact pansions for correlations exist in the literature only in the
that>,e,S; (k) starts ask|* when|k| goes to zero allow  caseB,=0[12]. (However, some attempts to investigate the
SCD'M itself to saturate Eq.151). More precisely, the Debye caseB,+ 0 are in progres$16].)
charge-charge correlatioﬁa,yeaeysg'yay(k) does obey Eq. WhenB,=0, at the first order itf, namely,#*, the 1t
(151) because the Debye polarization cIoE@'M is such tail comes from the convolutio146). Indeed, the semiclas-
that sical expansions take the forfhl,12
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p 2T (1) =pZ)T(N|%+42R2) (1) +#*R(r) +O(4°). ergy F{%e (&) for the immersion of a single closed curve
(153  \;§ into the classical gas. In the same way,

The classical contribution and the first quantum correction
ﬁZRﬁfy) decay faster than any inverse power law whereas the
corrections of orders higher thait decrease as 9. More
precisely, the tail of the semiclassical correlatW)‘ng“y)(r)
at orders® comes in fact from Eq(146) as the exact low- —— .
density tailsA{?/r® andAl>?/r 6. Henceforth, the cascade of Dg, (&) in place ofDg (&)

USS(n[g, ~ Vero(n)|t, (155
r—oe

a1

where Viqu)l{"} is given by Eq.(11) with the measure

power laws in the semiclassical linfit2] is induced by the In a weak-coupling regime for the classical plasma,
same mechanism as in the low-density limit of the fully namely, at sufficiently low density or high temperature,
quantum regimésee Sec. VIIIB L F{%ec( &) tends to its Debye expressiph2]

Moreover, as argued in Sec. VI B of Paper Il, there exists
a regime of physical parameters where both semiclassical e’ (1 1 exd—kphil&(s)—&(s')|]—-1
and low-density expansions may be performed. Since theFi,D(fi)zjfo dsfo ds’ N E(s)— £()] '
effective potentiaV/e *|{% is the only quantum term in Eq. ! ' (156

(146) and is exactly proportional te*, the first two terms
A{azj};/l’6 andAf’f}/rG in the low-density expansion of the ex- In the zero-coupling limitxy vanishes. Thefr; 5(&) tends
actAw/rG tail of the correlation coincide with the first two to the value— KDei2/21 which is independent from the loop
terms74T()|12r® and#*T()[{52/r® in the low-density ex-  shapeg, so that
pansion of theh*T{)/r® tail of the semiclassical correlation L
at orders*. Dg,(&) ~ Dgy(&). (157)

In the case of the OCP, the low-density lin(it38) coin- kp—0
cides with the first term in the Wigner-Kirkwood expansion
of the coefficient of the 0 tail [11-13,17, namely, the (This result would also be obtained by considering a semi-
term of orderk*. We recall that this expansion is legitimate classical limit for the two quantum charges, in which case
for the OCP, because the latter system has a well-behavegpes to zerg.
thermodynamic limit even in the Maxwell-Boltzmann ap- When By=0, comparison of Eqs(154) and (157) with
proximation. As in the case of multicomponent plasnfas, Eg.(2) shows that the tf leading tail of—ﬂU‘jg(r)|BO:0 in
and p expansions may be performed simultaneously in ahe weak-coupling limit for the classical plasma does not
low-degeneracy regime with weakly quantum dynamics angoincide with the exact low-densifyA, ,,/pa pa,l/r® tail
weak Coulomb couplingsee Sec. VIB of Paper)ll We of the Ursell funCtionhalaz(r)lBo=0 in the fully quantum

notice that this coincidence between ffeterm in the low- bod bl Indeod, . /r® contai ¢ i
density expansion and the* term in the semiclassical ex- many-body problem. Indee ‘1’10‘2_r contains extra contri-

pansion turn out both for the coefficient of the *f/tail of  butions with respect to-p,,_p,, BVeT)(r)[!% arising from

1 . 0(10’2
the correlation as well as for the free-energy EXPressiony, ,nqsFee: these contributions maké{Z}/papy independent

Since the system handled in the semiclassical derivation |sfa . . o
OCP from the beginning of calculations, the agreement bellO™ SPeciesx or v, according to Eq(70). However, when

tween formulas obtained from different descriptions of theBo# 0, the Iargg-d|stance behavis5) of _.ﬂ'jjtlez(r)lso In
OCP is another argument for the validity of the procedurethe same regime(157) happens to coincide with the
used to obtain results for the OCP from expressions deriveEDalaz/palpaz]/r5 tail of the exact quantum Ursell function

for a TCP. h.,a,(r)|g, at low density, as a result of several cancella-
o o tions in screening contributions.
D. Intrinsic quantum nature of tails induced only by B, The interpretation is the following. At the first order in

density, there are indirect interactions between the two
o _ chargese, ande,, because the latter ones interact through
A deeper insight into the structures of the®ltail (2) and Debye screeningwhich gives contributions of ordep®)

the 14° tail (10) of p{)'(r) with or without B, may be  with other charges of the quantum medium and these charges
obtained from the comparison with the simple model of twohave an algebraic interaction between each other. At first
quantum charges embedded in a classical plasma. Thisrders in density the involved Debye interaction is either
model has been discussed in Sec. V of Paper I. The effeCtiVQUreW C|assica(f0r any value OfBO) or of diffraction type
interactionU$(r) between the two quantum charges in the(only whenB,+0). In technical words, classical Debye in-
model decays algebraically at large distanceAccordingto  teractions correspond t6°¢ bonds and diffraction Debye

1. Comparison with a simple model

Sec. VB of Paper |, contributions to~°™ bonds, more precisely to the partef™
off —ef(6) 1 (0} which is a monopole-dipole Debye interaction. WhBp
UL2(Nlsy=0 ~ Vo a, (DI, (1549 =0, the quantum interaction is some kind of squared dipole-
r—o0

dipole potential possibly screened by one or tf§ bonds.
When By#0, the interaction is either a dipole-dipole inter-
i action W5 screened by twoF®™ bonds, or a dipole-
in place of D(&). D(&) involves the electrostatic free en- quadrupole interactionV, screened by on&°™ bond and

where\_/ififz)ﬁ‘)} is given by Eq.(5) with the measur® (&)
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possibly by aF°® bond, or a quadrupole-quadrupole bondande, by the Debye potential, which is linear in the charge,
Ws, which is possibly screened by one or tk6° bonds. while the guantum interaction is quadratic in each charge
The indirect interactions cannot be taken into account ire, . As a consequence, ti&2/r® tail of the particle-charge

. . . I
the simple model where all particles of the medium are CIaSE:orreIationEyeypfy)T(r)|30:0 at first order in density does

sical. Besides, generically they do not cancel each other in a . . 3 :
true quantum plasma, and it is indeed the case even in t8VOIVE linéar terms irg, . Thus thﬁ%{r decay of the lin-
low-density limit whenB,=0. This can be seen in another €1y induced charge density,e,py(r;40)|s,-o indeed
way by inspection of the intermediate formyg6). In a limit ~ Starts at ordep®, according to Eq(75).

procedure where only particles, ande,, located a0 andr However, wherB,+# 0, at first order in density, quantum
remain quantum, a purely quantum interaction involvingparticles interact only through a direct effective quadrupole-
[W;]? survives only between them, so that orly ., and  quadrupole potentiaV$" % [see Eq.(11)]. V&I®™|(®
é,,, do contribute in Eq(66); then we retrieve the result of arises from derivatives of the Coulomb interaction, which is
the model in the weak-coupling limifwWe notice as a curi- proportional toe,e,, and from quadrupolar moments, each
osity that for a symmetric two-component plasma, whereof which is controlled by the magnetic coupling constant
e,=—e_andm,_ =m_, we find K(29/m:0 so that, according Uc,=(B%/2m,C) X e,By. In the limit of an infinitesimak,,

to Eq. (1), the expression of the model happens to coincideat By fixed, the quadrupolar moment becomes quadratic in
with the quantum many-body result at low density, thoughe, . Thus the effective direct quadrupolar interaction is cubic
the charges that are involved in screening are indeed quain e, whene, goes to zero, and so is thm{f}/rf’ tail of the
tum] particle-charge correlatiol e (Z)T(r)|BO at the first order

. . yPay
WhenBO# 0, itturns out that, as a result ofacan_cellatlon p? in the same limit. As a consequence, according to Eq.
n:qechamsfrp which ta_kes place onlthhen t_here is g_o e>|< 75), the D*/r® tail of the induced charge density
change effect, two given quantum c arges interact IreCt)Syeypmd,L(r;&q)'B vanishes at first ordep, D*%=0.
by a quantum interactioWs at order p© and, at order Y 0 .
5/2 pHowever, screening of Debye type is no longer completely

p>'%, W5 is merely screened by a squared Debye interactio .
pos:sibl)&/3 convoluted with a single Debye term. The twoCtanceled at next order in [see Eq(108]. Subsequently, a
Iénear contribution ine, for infinitesimal e, shows up in

guantum charges are not affected by the direct interaction 1512 AT k )
Ws, W,, andWs involving charges of the medium at the [.)“ and theD*/r> tail of the induced charge given by the
first order in density. Thus there is no indirect quantum in-lin€ar response theory starts at orgef* according to Eq.
teraction arising only fromB, at order p?> and the low- (129.
density result for the true quantum many-body problem turns
out to coincide with the simple result for two quantum
charges in a classical bath.

An interpretation of the above cancellation is that, at the In the presence as well as in the absencBgfthe clas-
first order in density, which coincides with the low-density Sical time-displaced correlations have algebraic leading be-
limit of the first order in%, only semiclassical effects appear haviors with the same exponents as the corresponding quan-
and the effective interaction arising from purely quantumtum static correlations. The origin of these algebraic decays
dynamics and statistics in the presenc@@fcannot be con- is the mass inertia which prevents any polarization cloud
Veyed by quantum Charges of the medium which are Onbfrom fO”OWing inStantaneOUSly the motion of the Charge

semiclassically screened from the two given quantum parwhich it surrrounds, so that the average classical polarization
ticles. cloud around any set of given particles does not have the
symmetry propertiegabsence of multipolar momenttghat
would ensure the perfect screenidg, namely, the exponen-
tial clustering of particle distributions.
Now, we turn to the large-distance behavior of the in-  WhenB,=0, as shown in Ref[12], the classical time-
duced charge density. The order in density at which the leadyjisplaced particle correlation decays at least a&itva mul-
ing tail of = e, p""(r; 59) starts is determined by the low- ticomponent plasm#according to an analysis of hierarchy
est order inp, for which the coefficient of the decay of equations In the very special case of the OCP, where the
e (2)T(r) is linear ine,. Indeed, as already mentioned particle-particle correlation coincides with the charge-charge
in Paper I, at finite density and at any pomtthe induced correlation, the falloff of the time-displaced classical corre-
charge density is related to the particle-charge correlatiotation is even faster: it decays &t)/r° according to the
through Eq.(75). We stress that Eq75) is valid even for a  behavior of thet® term in a small-time expansidi1].
finite chargee, and is not restricted to linear effects. At  In the presence d8,, only the case of the OCP has been
finite density, the induced charge density given by the lineastudied, to our knowledge. The charge-charge correlation de-
response theory decays with the same inverse power law asiys asD(t)/r°. Indeed, the first-order term in the smakll-
the particle-charge correlation, as also argued in Sec. VIl &xpansion of the Fourier transforeﬁsocp(k,t)|50 starts at
of Paper |. _ _ _ _ order|k|? by a term given by formul&2.20 in Ref.[1]. This
When By=0, at first order in density, according t0 EQ. exact result may be obtained from the microscopic
(2), two particles with charges, ande, have both direct Bogoliubov-Born-Green-Kirkwood-YvorBBGKY) hierar-
and indirect Squared dipOIar interactions with each other. Th@hy as well as from linear response and macroscopic electro-
indirect interaction is conveyed by quantum charggsof  dynamics. This term has the same structure as in the quan-
the medium which interact with the considered partidgs tum sum rule(16) with cos-t) in place of

E. Classical time-displaced correlations

2. Linear and nonlinear effects
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Bhwi’ Bﬁwi ’ ” ’ ”
5> —coth ——|. (158 dxi| dxi| dxz| dxz

x(fdxf dx’gg[0'1'1](x,x’;x1,x1,xi))

Thus the term of order|k|? in e*Socpp (Kit),

2c(2) i 1 i i - i - ’ ’ "o_n
e SOCEBO(k*t_) oscillates with t@e Wlth well-defined fre X S 3t o) SERU(r V)
guencies which themselves oscillate with the angle between
k and B, as in EqQ.(17). If this exact result is expanded in I ret
° a.(47 ; §2a(2) P X(f dyf dy'Gs "HO%y.y ,Xz,Xz,Xz))- (A3)
powers oft, the nonanalytic term ire SOCPBOZO(k't) ap-

pears only in the® term. We recall that, in the cage=0,

the 1+ tail of €S cp derived from a direct expansion of  Equations(A1)-(A3) are the three allowed structures for
the correlation also appears only from ord®f11]. Sﬁ?m)n[o'ol(r,xa,)(b)-

For the sake of pedagogy, we give examples of diagrams
for each kind of structures of f9 tails. For instance, some
contributions to (il[o’ol(r,xl,)(z) of the form (A1) come

This work was partially supported by the §ten Rhae-  from the following diagrams ih™. The contribution from
Alpes. Fr—W is [W3]%2 and then G5 1%(x;xq,x})

:5()()5)(1,)(1' The contribution tog(ﬁ)n[o'o](r,xl,m) from

APPENDIX A the diagrarrp equal toF g* pFR is given by the 1° tail of
the diagram1 equal to[ Fr—W]* p[ Fg—W]. This tail is the
sum of two terms,
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In this appendix we investigate the structure of the® 1/
tail of h"" before loop expansions wheBy=0. We intro-

duce the notatiori"~[%9'](y,y") for a function which is of L
parity_ (—1)% and (—.l)q- under inversion oX andX’,. re- J dXéE[W3(r’X1’Xé)]2( f dyp(xs) [ Fr—WI(Y, x5 x2)
spectively, and which is the sum of graphs whegras a
non-Coulomb-root point whilg’ is any kind of root point. (A4)
According to Ref[10] and Sec. VII of Paper I, the 9
tail Sff,)n[o'ol(r,xl,XZ) of h"" which is involved in Eq.(36)  and the symmetric term obtained by exchanging the roles of
comes either from the terfiw;]2/2 in the asymptotic behav- root points 1 and 2. This tail corresponds to a
ior of one bondFg and has the structure gg’[o'ol(x,xl,xi) which is identical to the previous one,
while G5 (Y, x2.x2)=p(x2)[FrR—WI(Y.x2,Xx2). Accord-
ing to Eq.(31), the contribution tofdyG, " from W reduces
d rf d r( f dxG D10 (x: vy y! ) to that from W;. According to Eq. (34),
O R 1dyG "00(y:x5,x2) = p(x3) S AYFR(Yix3.X2):
1 . g , A contribution to 3(1%[0’0]0,)(1,)(2) of the form (A2)
XE[Ws(r’Xl’Xz)] (j dyg, ™" (y?XZsz))v (A1) arises from the diagrafl that reads g F%pFg]. Itis equal
to those among the 19 tails of diagramsW[ W= p(Fg
—W)] and W[ (Fr—W)* pW] that are even irX,; and X,.
or it comes from the product of the leading 1/asymptotic ~ The tail of the former diagram may be written as
behaviorsSt) of two convolutions, each of which involves
at least one bonég. According to the general analysis of
Appendix A in Paper |, the 17 tail before integration over f dx3Ws(r, x1,x2)Wa(r, x1,X5)
loop shapes is odd under inversion of each loop shape,
SB(r,x1.x2) =SEM(r, x1,x2). These two functions , ,
link either exactly three points an&ai®(r,x1,x2) is of X( f dyp(x2)[Fr=Ws](y.x2:x2) |, (AS)
the form

where we have used propelyl).

(6)[0,0] ; . ;
dv [ dxs [ vz [ dxgn09x: 3 Aq Sqqn (r,x1,x2) tail of the .fo-rm(A3) togethe.r with
X1 | 9xz2) YXx2 2 X1X1 contributions of the forn{A2)—originates from the diagram

[Fr* pFRrI[Fr* pFr]. More precisely, the tail with structure

(3)[1,1] ’ "\ a(3)[1,1] ’ ” "
XS X)X ) (A3) is given by the diagranil equal to

< d dv’ —-n[1,1,0] , r; /, I!, ) A2
U yf y'Gs (YY" x2:X2:X2) (A2) [(Fre W) pWI[We p(F— W),

or they link exactly four points, with the result It reads
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In Eq. (B4) the contributions fronW andF gt— W have been
J dXiJ dXé( f dXP(Xi)[FR_W3](X1X11X1)) summed and 1/2 is the symmetry factor of diagrafiifie
first three diagrams are such that one and only onés
XWa(r,x1,Xx2)Wa(r,x1,X2) associated with 1as well as with 1.)
Moreover, contributions tgdxG 3 % (x; x1,x}) at or-
x( f dYP(Xé)[FR—Ws](y,Xé,Xz))- (AB) ders pﬁggp and pop arise from diagrams with the structure

G5M0% 3 . Indeed, thepjs2, term corresponds to
Equation(A6) corresponds to

- ! ! " - l
G5 OO0 XXX G5 O Gon =5 [F*1%p* So. (85)

=8(X") 8y, xrpP(XDIFrR=Wa](X, x1,x1)
. Al ret o _ We notice that the contribution from diagra®i™(x, x1,x1)
while G5 7(Y.Y i X2, X2,x2) has a similar expression. o [dxg,(x, x;,x}) at any ordepjy,,, with n<1/2, vanishes
according to Eq(30). Thus the convolution of an algebraic
APPENDIX B tail with F°™ increases the exponent of the falloff after inte-
gration over orientation ofx. The term of orderp in

In this appendix we turn to the derivation of the loop- FdxGn0%(x: v, x1) is given by agg”[°’°]|.{§§p*2D with

density expansions of therf/tail of h"". We use the struc-
tures of this tail with two, three, or four intermediate points
given in Appendix A. Loop-density expansions are per-
formed according to the principles of Sec. IV A. gnn[0,0]|{1} —Foot E[Fcc]z*pE[Fcc]z

As already sketched in Sec. IV A, diagramshA" that 2 loop™ " RT™ 2 2
contribute to the coefficient cﬁ(f.i)n at a given order inpjoop

= 1 1
are readily determined as follows. Diagrahighat appear in + E[FCC]Z*PFCC*PE[FCC]Z
functionsG, and G5 are replaced by diagranﬁT built with 1 1
bonds F°¢¢, F°¢™ F™¢ [FCC]Z/Z W, and Fr—W=Fgy +Ecc! gec cc2 cc2 cc
’ 1 : W FCC FC% p [ FS)2+ Z[F°¢]%x pF
—[F®]?/2—W. The analysis in loop density performed for p2[ ] 2[ I™p

analogous bonds in Sec. IV A of Paper Il is used again with 1
the following results. + % p Z[FCC]2% pFee
Fdxg 5 1%%x; 1, x1) starts at ordepp,, with P2 P

+bridge,.  (B6)

gg—lo,o]h{ggp(x;xllxi):5()()5)(1,)(1 (B1)  In this writing we have summedV and Frr—W while
Bridge; denotes the value of a bridge diagram with five
whereasf dx[dx’' G5~ ~[%M(x,x"; x1,x}.x4) Starts only at PondsF® and two root points,
order pjogp, With
bridgey(ry—r1,x1,x1)

g5 ORI OGX X X XD

1
= 5003y, DR d): B2 =2 [ (o [ P L P)

In the following, the notatiow|{5, is to be understood as the X FCS(Ly, P YF(P, P )FC(P,L)FC(P L)),
contribution ofG of orderp,rg,op afterintegration over position

variables. We notice, though this formula is not used in the

present paper, that

(B7)

Bridge; is analogous to the bridge diagrairg;\ﬁdgq5 with six

1 bondsF°® and one root point, which is introduced in Sec.

G5 OISR % X X1 x 1 XD = EP(XDP(X{){' 1, VD of Paper Il for the calculation of the free energy from
(B3) the diagrammatic representation of the raﬂ@f*'MB. Dia-

grams at next order iy, are too numerous to be presented

with here.
As a conclusion, the structuréal), (A2), and (A3) of
[ }=F°M(1,1)FM(1,1")F°%(1' ,1") the tailg(ﬁ)g with two, three,2 or four intermediate points start
A A1 Cora A e 4 1 A at ordgrSp,OOp, Ploop: and Pioop: respect_lvely. Therefore the
+FE(L,Y)FRH(1,17)FET(L,17) 1/r® tail of the particle-particle correlation starts at or@ér

Indeed, in its contribution to the particle-particle correlation,
h"" is convoluted by dressings that start at ord;%gp, and
+F°%(1,1)F°®(1,1")Fgre(1',1"). (B4)  the root points oh are multiplied by weightg)o,. Thus, up

+ FCC(lyll)ch(lylr/)FmC(ll ,117)
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to orderppgy, Aaq, /1% is given by Eq(44) whereSR®?  sB0(r £ & )[10)

Aa%p
has the structure with two intermediate poitdd). Then the 1
results of Sec. VB are derived from Eq81) and (B5). :'7:1[50[1 D.,.8 (§1)w[2 1] (K, & &g, ap)
APPENDIX C

X o FMDH (K, &g, an) |(1). (CH

In this appendix we explicitly check identitig€81) and
(82) at the first order in density. Th® ,/r® tail of the
particle-charge correlation in the presenceBgfreads Subsequently, the 7 tail of the particle-charge correlation,

given by Eqs.(Cl) and (C5), has the same structure as Eq.
(10D with FbP(k,s;,s,) replaced byZYeyFE’fy(k $1,S),
—Szf dxap(Xa)Pe o whereF5E (K, sl,sz) has an expression similar to EG.02
“a with the term in braces equal to

X f dXbP(Xb)Po€a, Spo' T XasXb),  (CD) 1
EL dséf Da,Bo(gl)f Dy,BO(§2)[k'§l(sl)]2[k'§2(SZ)]
where, according to Sec. VII,B of Paper |,

S%(r, xa.xp) is the 1t* tail of SE*h"" pF™¢ which is | 4x

even under inversion of each root point. According to Eq. X[k-fz(sz)]?. (C6)
(29), the smallk expansion of-°" starts at ordefk| so that
SAO(K, xa,xp) May be decomposed as the sum of two

Lot The nonanalytic term in EqC6) has the same structure in
contributions,

as Eq.(109 with the coefficientsC,(s;,s1) 6C,(s;,S,) re-
placed by &C,(s;, sl)f(l)dszﬁc (s,,s5). The factor 2 is
em(l compensated by the factor 1/2 arising from E2y), and the
f Xmf dx2p(x2)F™ (Koxa xa) D, /r® tail of 3,e,p2)7(r) is equal to3 e, times the ex-
pression(110, namely, we get Eq.81).
The origin of theD/r® tail of the charge-charge correla-
tion is reduced to

X Syan P HIFCMD ¢ (K, x, xb) (C2a

f dx1 f dx2p(x2)Z (K, X1 x2) S

D
5= f dxap(Xa)Paka, f dxup(Xp)
XFEMU(K, X2, Xb)- (C2b

X Ppe SPO(r v ), C
We have not included the third term Po€aySec (M1 Xa 1 Xb) (€7)

whereSDO%(r 5. xp) is the 1t tail of FCMp* h"« pF™®,

f d)(lf dx2p(x2) 2O (K, x1;Xa) More precisely,
X San“IFmE(k, x5, xp) =0. (C3 S2OU(K, xa,x6) =F ™ (K, xa,x1) Stan - (K, x1,x2)
It vanishes for the same reason as Bf). XFEMD(K, x5, xb)- (C8)

Slncechm(l) and3 ) are exactly of ordep,,, S{2*%

starts at ordepIoop where it involves Eqs(88) and(89). At
the first orderp® in particle density the same compensation
mechanism as in the case 8§)%% operates fors;)%%.
Indeed, similarly to Eq(99), the effective contr|but|on from

Since pF°™™) is exactly of orderpp,,, by inserting Egs.
(88) and (28) into Eq. (C8), we obtain that at the lowest
order in particle density

SE*xh"™ pF™MC to the tail Si) at the lowest order ifpop D2
may be reorganized in Fourier space as —5|(K= E Palealz Pa,® azf Dy, 8,(&1)
1 1 1
Fem) oyl 4 EFCC(O)pWEZ,l] gEmal) (C43 xf D, B,(&2) Jo dsj0 ds'[k-Ng, &1(S)]

X[k-No,&2(S") IWa(K, &1, &> a1, a2). (C9)

2,1 . .
+§W£1 ]PFmo(l)- (Cap Equation (C9) has the same structure as H401) with
FbP(k,s1,8;) replaced by, .e eyFm/(k,sl,sz) where

According to Eq.(94), only Eg. (C4b contributes to the Fffy(k,sl,sz) is given by an expressmn similar to E4.02
inverse Fourier transform with the term in braces replaced by



5346 F. CORNU PRE 58

Joldsifoldsﬁ f Dogy($1) J D, p,(£)[k- £(51)]

47
X[k'fl(si)][k'§z(52)][k'§2(sé)]ﬁ- (C10

The nonanalytic term in EqC10 has the structuré105)
with 0C,(81,51) 6C(s;,S7) replaced by
4[5ds;8C,(s1,51) [4dShC,(sz,85).  According to  Eqg.
(97), the factor 4 is compensated by a factor 1/4 and we
obtain Eq.(82).
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